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bond distance of 3.023 A. A unique distinction between 
these would have been impossible without the direct 
location of the hydrogen atoms. 

Table 5. Non-hydrogen-bonding intermolecular distances 
less than 3.3 A between the heavier atoms 

Atom i Atom j in molecule at: Distance d~j 

C(5) 0(7) x,y,z+(O,l,O) 3.210 ,~ 
N(6) 0(2) .~,½ + y,½ - z 3-239 
N(8) 0(2) 2,½+Y,½-z 3.079 
N(8) 0(4) x,½-Y,½+z 3.145 
0(4) 0(4) 2,fi,~ + (1,1,0) 3-233 

In addition to the least-squares refinement program 
referred to previously the following computer pro- 
grams were used in this analysis: IBM 7070 programs 
for data processing (McMullan, 1964), Fourier syn- 
theses (Chu & McMullan, 1962), structure factors 
(Shiono, 1962) and IBM 1620 programs for the direct 
method of sign determination (Beurskens, 1963) and 
for the calculation of inter and intra-molecular geom- 
etry (Chu, 1963). 

I am very grateful to Professor G. A. Jeffrey for the 
opportunity to work in his laboratory and for critic- 
ally reading the manuscript. The research was sup- 
ported by the U. S. Public Health Service, National 
Institutes of Health, under Grant Number NB-02763. 
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The joint probability distribution of complex-valued structure factors, which may be used for the 
statistical determination of the phase angles in non-centrosymmetric crystals, is derived as an exten- 
sion of our previous theory for real-valued structure factors (Naya, Nitta & Oda, 1964). The pro- 
bability distribution function is given in a form of an orthogonal series based upon the associated 
Laguerre polynomials. The application of the theory is also illustrated in some special examples. 

In~oducfion 

In a previous paper (Naya, Nitta & Oda, 1964), the 
present authors dealt with a theory of the joint prob- 
ability distribution of signs of structure factors which 
is applicable to centrosymmetric space groups. A theory 
of the joint probability distribution of complex-valued 
structure factors for non-centrosymmetric crystals may 
similarly be formulated and will be useful for statistical 
determination of the relevant phase angles. Although 
studies along this line have been published by Bertaut 

(1956) and Karle & Hauptman (1956), it seems that 
much is still left open regarding the complex structure 
factors. In this paper, we extend our theory of the 
statistical method of the sign determination in real 
structure factors to the phase angle determination in 
complex structure factors. 

In §1 is introduced a concept of the joint probability 
distribution of phase angles. In §2 is given a formul- 
ation of the joint probability distribution of complex 
structure factors, from which the explicit expression 
of the joint probability of phase angles can be derived. 
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In §3 are shown some examples of calculation on the 
basis of our theories in §§ 1 and 2, which may show its 
practical usefulness in crystallography. 

1. Jo int  probabilit~ distribution of  phase  angles  

In the previous paper on the statistical method of sign 
determination (Naya, Nitta & Oda, 1964) for centro- 
symmetric crystals, the concept of the joint probability 
distribution of signs was introduced. The same con- 
cept can be easily extended to the phase angles of 
complex structure factors as described below. 

1.1 A general expression o f  the joint probability distri- 
bution o f  phase angles 

Let m normalized complex-valued structure factors 
be denoted by E l , . . . ,  Era, their amplitudes by E1 . . . .  , 
Em and the corresponding phase angles by 09b. •.,  09m. 

E1 =El  exp (i09~),..., Era=Era exp (i09m) (1) 

Values of the amplitudes E ~ , . . . ,  Em are determinable 
from measurements. Let P(091,..., 09m) for the phase 
angles be the joint probability distribution under the 
condition that the magnitudes of E l , . . . ,  Em have al- 
ready been known. Since the distribution function 
P(09~,. •. ,  09m) should naturally have the periodicity of 
2zr for each 09,, it may be expanded in a form of multiple 
Fourier series as 

oo 1 x . . . . .  - ;  

(2zc) m ,,=-~o "m=-~o 

x (exp {-i(n1091-+-...-t-nm09ra)}) exp {i(n,091+... 

+nm09m)}, (2) 
where the coefficients with angular brackets are the 
expected values of exp { - i(n1091 + . . .  + nm09m)}, name- 
ly, 

(exp {-i(n1091+.. .  +nm09m)}) 

= f i ' ~ . . . f i ' ~ e x p { - i ( n 1 0 9 1 + . . . + n m 0 9 m ) }  

x P(09b. . ., 09ra)d09x. . .d09m . (3) 

Because P(09~ . . . .  ,09m) should be invariant with respect 
to the simultaneous change in signs of the angular 
variables 091 . . . . .  09m (Karle & Hauptman, 1956; Ber- 
taut, 1956, ) we have 

P ( 0 9 1 , .  • . ,  0 9 m ) =  P (  - - 0 9 1 , . . . , - 0 9 m )  • ( 4 )  

Since equation (3) with (4) gives 

(exp {--i(n,091+...-t-nm09m)}) 
=(exp {i(na091+... +nm09m)}) 

= (cos (n1091 + . . .  +nm09m)), (5) 
and 

(sin (n1091 + . . .  +nm09m))=O, (6) 

(2) can be rewritten as 

~ P(sl . . . . .  sin) can be expanded as 
1 1 I 

~F. . , .~F ( S l n l . . . s m n m ) S l n l . . . s m n m .  
e ( s l  . . . . .  sin) = - ~ -  nt = 0  nm=O 

[See also equation (1) in our paper (Naya, Nitta & Oda, 1964)]. 

co ¢73 

. . . . . . . .  X2. .  X P(091,..., 09m) = (2~z)m ,,,--- ,,'m'=- - 

x (cos (n1091 + . . .  +nm09m)) cos (na091 + .  • • +nm09m). (7) 

The equation (2) or (7) is a generalized analogue to 
the joint probability distribution of signs P ( s ~ , . . . ,  Sm)'~, 
which was introduced in the previous paper on the 
centrosymmetric case. 

1.2 Reduced probabilities o f  phase angles 
The probability distribution for a single structure 

invariant which is independent of the choice of permis- 
sible origin (cf. for example, Karle & Hauptman, 1956) 
is derived from (2) or (7), as follows. Let ¢1 be a struct- 
ure invariant, being a linear combination of several 
components 09~'s whose indices h~'s satisfy a necessary 
condition; for example, 

~ l  = 09h~-'['- 09h2-+- 09h3 ~ 091 -~- 092-1- 093 , ( 8 )  

with 
h l + h 2 + h 3 = 0 .  

The probability P ( # l ) d ¢ l  for ¢i  to be between 051 and 
q~l+d¢l  is given by the reduction (integral) of P(091, 
• . . ,  09m) concerning 091,..., 09m, assuming that qh+ 
09,02 "Jr" 093 = ~ 1  i s  kept constant. 

P(¢1) = . . .  P(091,.. . ,  09re)d091...d09m 
0 

(~ot + ~02 + ~03 = ¢1 = eonst.) 
oo 

_ 1 X (exp{-iUl(09,+092+093)})exp{iU1(091 
2re u , = - 

+ 092 + 093)} 

_ 1 X @xp ( - i N l e t ) )  exp (iNlet&) 
2z~ N,=-oo 

oo 

_ 1 {1+ X (exp(- igxCx))exp( iNlCx)} .  (9) 
2re Nl=_o~ 

(N1 4=0) 

With the use of (5), equation (9) is rewritten 

1 {1 + 2  X <cos NI¢I )  COS N1~1}, (10) P(¢1) = ~ g,=l 

which gives a general form of the probability distri- 
bution for a structure invariant. 

Similarly, the probability distribution generalized 
for k structure invariants ¢P~,..., ¢~ is obtained by 
reduction, 

P(  q~b . . . , q~e) = (091,..., 09m)d09a . . . d09m 
0 * ' ' ' ' ' "  

(¢1 = const . . . . . .  e k  = const.) 
oo oo 

_ 1 X . . . .  X ( e x p { - i ( N l ¢ l + . . . + N k ¢ k ) } )  
(2z0 ~ N,=-~ Nk = - m  

exp {i(NffPa+. . .  + N k e D }  
co oo 

_ 1 X . . . . .  Z < c o s ( N l e , + . . .  +Ne¢~) )  
(2r0 ~ N,=-~ N k = - - ~  

cos ( N 1 ¢ 1 + . . .  +N~¢k) .  (11) 
It is to be noted that the k invariants are linearly inde- 
pendent of each other, namely 

NI¢I  + NzcP2+ . . .  + N ~ ¢ I c ~ 0 ,  
(except for N1 = N2 . . . .  = NIc = 0). (1 2) 
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1.3 Conditional probabilities 
The knowledge of the value of a structure invariant 

t~ 2 has an influence upon the probability distribution 
of another invariant ~x. Let P(¢11¢2) be the conditio- 
nal probability distribution of ~1 for a fixed value of 
~2. It is shown that 

P(¢1, ¢2)=P(cP2)P(cI)1]qs2), (13) 

P(~xl~z) = 
P(~I, Cz) 

P(¢2) 

It is to be noted here that although the expected value 
(sin Nl~bl) is zero as shown by (6), the conditional one 
(sin Nlq51).2 does not always vanish as shown by 
(18). 

In the same way, the conditional probability distri- 
bution of ~x under the condition that the values of 
two structure invariants q52 and q)3 are fixed is derivable 
as follows [equation (19)]: 

1 ~ ~ @xp{_i(N1¢h+Nzq52)})exp{i(N, qSl+N2~2)} 
(2re) z N I = - - c o  N 2 = - - o o  

1 ~ (exp (-iNzq~z)) exp (iN2¢2) 
2re U~=-oo 

2re N1 = - -  oo 
(exp (-iNlCa))e2 exp (iNx~a) 

1 
- 2zc { 1 +  

oo 

X (exp(-iN1qbl))~2 exp(iNl¢l)} , 
N l = - - o o  
(NI  4= 0) 

(14) 

where the coefficient 

(exp { - i (N,¢ ,  + NzcPz)}) exp (iNzq)2) 
@xp (- iNlqh))¢2= Nz=-~ 

27 (exp (--iN2~O2)) exp (iN2~2) 
N 2 ~ - -  oo 

(exp ( - i N I ~ I ) ) +  ~ (exp{-i(Nlq~l+N2~2)})exp(iN2~2) 
N2-- - - -  o0 

(N2 4=0) 

1+ ~ (exp (-iNz¢z))exp(iNz¢z) 
(N24=0) 

represents the conditional expected value. From (14), 
P(qh[ #2) becomes 

1 {1+2 Z <cos N,~I>¢2 cos N, q~, 

+2 X (sinNl~x)~2 s inNl¢l} ,  (16) 
N I =  1 

where the conditional expected values of cos Nl~b~ and 
sin N~b~ are given respectively by 

(15) 

P(~al~2, ~3) 

1 {1 + ~. @xp (-iN1~,))¢2,¢3 exp (iN1~1)}, 
2n N1 = - -  oo 

(N14= 0) 

(19) 

where the conditional expected value 

(exp ( - iNI¢I))¢2,¢a 
is [equation (20)] 

(cOSNlah).2= 

and 

(sin N1~1)¢2 = 

(cos N~¢~)+ 

oo 
- X 

N 2 = 1  

co 

Z {@os(NlcPl+N2¢2))+@os(N, cI)x-N2¢z))}cos N2¢2 
N z =  I 

1 +2 ~ (cos N2¢2) cosN2qh 
N 2 = I  

{ <cos (N1 ~1 + Nz~z) ) - <cos (N, cb, - Nzcb2) >} sin Nz~b2 

1 -t- 2 ~ (cos N2~2) cos N2~2 
N 2 = l  

(17) 

(18) 
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IX) 

f 
(exp (--iNlq)I)>,2,¢ 3 = N 2 = - - c °  N 3 = - - ° °  

N?=--mN3=-m 

Similarly to the case of the centrosymmetric crystals 
in the previous paper (Naya, Nitta & Oda, 1964), 
any conditional probability and expected value can be 
successively obtained as the number of known values 
of the structure invariants increases. 

@xp { - i ( N ~ ¢ I +  N2¢2+ N3¢3)}) exp {i(NzCP2+ N3¢3)} 

@xp { - i (NzcP2+ N3¢3)}> exp {i(N20~2 + N3(/)3) } 

2. Joint probability distribution of complex-valued 
structure factors 

Let the explicit form of the joint probability distribu- 
tion of a set of m complex structure factors be 
P(E1,.  . ., Era, ~ ,  . . . ,  ~Om). Then, since the joint prob- 
ability P(~01, . . . ,  rpm) introduced in 1.1 is taken, by 
its definition, as the conditional probability obtained 
from P(Ex, . • . ,  Era, ~o1,..., q~m) for a set of fixed values 
of E l , . . . ,  Era, we have 

P(fPl,. •. ,  ~Om) = P({Ol,. •. ,  (pmlE1,. •. ,  Era) 
P ( E b .  . ., Era, ~ob. . ., (am) 

12o'~. . . f i '~P(El,.  . . ,Em,  ~ol,. . ., ~om)d~Ol. . .d~om . (21) 

Hence, if the explicit form for P ( E b . . . ,  Era, ~ol,. • . ,  ~Om) 
is obtained, the equations introduced in §l which are 
useful for phase determination will be explicitly derived. 

In this section the explicit form of the joint prob- 
ability of the complex structure factors is derived, by 
extending the methods used by Klug (1958) and by us 
(Naya, Nitta & Oda, 1964) for the real structure factors. 
The calculation is carried out based upon a priori 
probability of 'uniform distribution' for atoms in a 
unit cell. 

(20) 

2.1 M o m e n t s  o f  complex-valued trigonometric structure 
factors  

Starting from the complex-valued trigonometric 
structure factors as 

S--I  

~(h)=z Z' exp (2~zihrSp) 
p = 0  

s - - I  

= z Z exp (2rci Rvhr) exp (2nihtp), (22) 
p = 0  

we introduce the mixed moments of ~(h,) , . . . ,  ~(hm), 

m~..'.'/; (Hi,.. •, 

= ~(hl)~*~*(hi)...~°'(hm)~,*°'*(hm), (23)I" 

where Sp is the pth operation of the symmetry with 
the rotational part Rp and the translational part tp, 
s is the order of factor group, z the order of translation 

? Karle & Hauptman (1956) used the mixed moments of 
another type 

m~.,'.'~m~(hl . . . . .  hm) = r/21 (hl)~ ~ 1 (hi)... r/)'m(hm)~/~ m (hm), 
where r/ and ~ express the real and imaginary parts in ~= 
1/+ i( respectively. 

group (z=2 for A, B, C, I; "c=3 for R; z = 4  for F), 
{*(b) means the complex conjugate of {(b), and e, 
0c*,..., co, co* are non-negative integers. The average 
in (23) means the integration with respect to r over 
the unit cell. The integration can be easily carried out 
(refer to Appendix I of Naya, Nitta & Oda, 1964), and 
this results in 

m:*:b3c°*(hl,..., bin)= 
~(~+"*)+"'+(~+~*) Z Z .... Z Z 

~'C~p=~ Z ~ p * = a *  ~'O)p=O) ~O)p*=O)* 
P P P P 

~!~*!...o9!o9"! 
× 

/ / (~p  ! ~ ; ! . . .  cop !co; !) 
P 

s - - I  

x exp [2~i{ Z' [ (ocp-~;)hl+. . .  +(cop-coo)bm]tp}] 
p = 0  

s- -1  

x J  [Z R p { ( ~ p - ~ ; ) h l + . . .  +(cop-co;)hm}], (24) 
p=O , 

where the ranges of the integers ~p, ep , . . . ,  cop, @ are 
0 < 0cp < 0c,..., 0 _< co; < co*, respectively; the summation 
is to be carried out over all possible combinations of 

s--1 s - - I  

~p, . . . ,  cop satisfying Z ~p=~ . . . .  , Z co;=co*. 
p = 0  p = 0  

The Kronecker symbol J means 
s--1 

[Z Rp{(o'~p-o~;)ha+...  +(cop-c%)hm}]= 1 , 
p = 0  

s - - I  

if Z Rp{(C~p-C~;)hl+... +(cop-cop)hm}=0, 
p = 0  

s - - I  

J [Z Rp{(c~p-@)hl+. . .  +(cop-c@)hm}]=0, 
p = 0  

s- -1  

if Z Rp{(~p-~ ; )h1+ . . .  +(cop-co;)bm}:fiO. (25) 
p = 0  

For the space group P1, (24) takes a simple form 
~, o,,= hm)=J{(c¢ -~*)hi + + (09 -co*)hm}. m~,.'.';;, (n l , . . . ,  . . .  

(26) 
2"2 Moment -cumulant  transformation 

The cumulants with respect to the moments of (23) 
can be obtained by an extension of the one-dimensional 
moment-cumulant transformation 

°° un { un } 
Z kn =log ~ mn ml=0 ,  (27) 

.=0 - 7 .  .=0 7.v ' 
where u is a real carrying variable and kn the cumulant. 
In the case of many-dimensional transformation with 
complex carrying variables ul's?, we have 

, a  a* l i ,O) l l~*  
f kcx, . . .o) ,  U l  Hi  . . . .  m - m  

-~...o, ~ '-~*' i . .co!co*! cz,~ ¢, . . . t(.OtCD* ~ 0 

log { ~ ,*..xo* uI~u~ *'" n*°'n~°*'l = m . . . .  co " - m - m  } ( 2 8 )  
~,~* ..... o~,~*=o c~!~*! .co!co*! J '  

? The complex carrying variable can be expressed by u= 
v+iw=ue iO. u* is the complex conjugate of u. 
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/(ct* (.o* where .~,.-:g, represent the cumulants. 
Comparison of the expansion series in both sides of 

equation (28) gives the following relations" 
klx* CO* ct* Oa* ~."~ =m~..':i; , for (c~+~*)+. . .  +(co+co*) 

= l , 2 a n d 3 ,  (29) 
klx* o)* c~* fD* ~.".g, = m~.'.'i; 

- 3  X X 
(c , '+~*')+. . .  +(w '+w* ' )=2  (~"+~*")+. . .  +(w"+w*")=2 

~*" co*' ~*" a~*" ( 2!)2 
x m~,."g,, m,,,..'.'g,,, 4! 

~!c~*!...co!o)*! 
x (<x' hx*' ! . . .  co' !w*' !)(<x" !0W' ! . . .  co" !co*" !) 

× a{.-(¢ + ¢')}a{~* - (~* '  + ~*")}...a{oo 

-(co' + w")} 5{co*- (co*' +co*")}, (30) 

for (c~+c~*)+... +(09+0)*)=4,  

k~x *...Ojl ~,i CO* .... o~ = m~.-.'a; 

- 1 0  X X 
( a '+~* ' )+ . . .  +(w'+w*' )=2 (c~"+~*")+.. .  + (w"+w*")=3  

. . . .  ~ . . . . . .  2!3! 1,1,1ct ...CO ~ ...r.z~ . 
x ,,-~,'...o, . . . .  ,~"...~" 5! 

ahz*!...co!co*! 
X 

(a' !~ * ' ! . . .  w' !~* '  !)(~" ! ~ * " ! . . .  ~ "  !m*" !) 

× a{~-(~ '  + ¢')}a{~* - (~* '  + ~*")}. . .  a{co-(co' + co")} 

x 6{w*-(w* '+co*")} ,  (31) 

for (c~+~*)+. . .  +(co+co*)=5,  
and so on. 

2.3 Moment-generating function 
The moment-generating function corresponding to 

the moments defined by (23) can easily be prepared as 
follows (see Appendix I): 

~ f ~ ( U l , . . .  , Urn) 

=exp {¼(u~+... +u~)} exp [ S n- En], (32) 
n=3 

where -£n is 
-£n= L" { 1 ~ "+'* { 1 ~ °'+°'" 

<o+..,+...+<o,+o.,:ntV----g-,/ " " iTS /  

a!a*! . . ,  co!co*! 
(33) 

and 
N Z" (34 )  

Zn= Z ~u'] , q/s= N 
i=1 (Z f~)*" 

j = l  

In these equations, S = s z  is the symmetry number, J) 
the atomic scattering factor and ~us is its normalized 
one, and N is the number of the atoms in the unit cell. 
e l , . . . ,  era are the statistical weights for special type 
reflexions (Bertaut, 1960). Expansion of the right hand 
side of (32) gives 

z3 
9J~(u,,..., Um)=exp {¼(u~+... +UZm)} 1 + -ff--£3 

z l  
-t- { ~ -  -£4 Jr- - - ~ -  -£3 2 } 

Z 3 Z  4 Z 3 

It is to be noted that the form of the series (35) is the 
same as the one in the case of centrosymmetric crystals 
[1964, equation (39)], although the implication of -£n'S 
is modified corresponding to complex-valued quanti- 
ties. 

2.4 Fundamental inversion transformation 
The inversion transformation of the moment-gener- 

ating function (35) gives the joint probability distri- 
bution of complex structure factors 

l 1 991(iul,.. iura) P(E1, . . . ,  E m ) -  (2zO2r a o~"" -oo "' 

• ) 
x e x p [ - - i  E ~ +  ul Ea + 

• )}1 
(see Appendix I). 

Substituting equation (35) in (36), and taking account 
of relation (33), it is found that the integration in (36) 
can be expressed by a series of inversion terms as fol- 
lows: 

I - Invers ion  of { exp (¼uz)(u'~ ) n ( 2 )  n* } 

- (2r02 -~o -co exp (-¼u2) 

x exp { -  i - - - - u E *  + u*E } 2  du, (37) 

where n and n* are non-negative integers. 
By the relations E = E d  ~ and u=ue w, it holds that 

½-(uE* + u 'E )  = uE cos (09 - 0),  
and 

Then 
du - dvdw = udud O . 

1 in+n*f°°12n exp (--¼u z) 
I - -  (2z0 z 2~+~ , 0 0 

x exp { - i u E  cos (~0-0)} u n+n*+l exp {i(n* -n)O}dudO. 
(38) 

With use of the relations 

and 

e-iUEeos(~°-°)=(-i)m ~ Jra(uE)e-im(~-°) (39) 
m = - - m  

f 2rt e -im({°-°)ei(n*-n)°dO- 27ze-im{° c~m - -  ~ n--9"l*, 

0 

(40) 

(38) becomes 
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I = ~1 e_i(n_n.)~ 
7Z 

[ (-- 1)n* 
2 n+n*+l loeXp(-¼u2)Jn_n,(uE)un+n*+ldu ], (41) × 

/ 

where Jm(uE) are the Bessel functions of degree m. 
The relation (41) is further integrable with respect to u 
[see Appendix II and Erd61yi (1953)], and its final 
result is 

I = --1 e_e2Kn,n,(E) ' (42)]- 
7Z 

where 

and 
Kn,n,(E)= Rn.n,(E)e -~(n-n*)~, (43) 

R n  n , ( E ) = (  1)n*n *'rn-n*l('-'*)tE2~ (44) ~ "/-~ /--'n * \ ] " 

In (44), L~)(x) is the associated Laguerre polynomial 
which is defined by 

e~x-~' dv 
L~)(x) = vt dx ~ {e-zxV+U). (45) 

The function Kn,n,(E) satisfies the orthogonal relation 
with respect to the weight function 1/nexp ( - E  2) 
proper to the complex structure factors; namely, 

~l :'~ l exp(_EZ)K*,n.(E)Km,m,(E)EdEdq~ 
0 d O  7~ 

=n!n*!C~nm(~n,m, , (46) 
(see also Appendix III). 

Thus, when the probability distribution of a single 
structure factor is taken as a simple example, it is 
easily shown by the use of the orthogonal relation (46) 
that the probability P(E) can be expressed as 

P(E) = 1 e_E2 ~ ; (K*,, ,(E)) Kn n,(E) (47):[: 
n=0 n*=0 n]n~g ] ' ' 

where 

(K* * ( E ) ) = I :  I~" K';,".,,.(E)P(E)EdEdq~. (48) 

From the nature of the Laguerre polynomials, it 
is also shown that the polynomials Rn,n,(E) possess 
a symmetric character in n and n* as follows, 

Rn,n,(E)= Rn,,n(E) . (49) 

Rn,n.(E) can be expressed by the expansion series 

Rn n.(E)= Z" ( -  l~mu~,,ffn'~[n*~I:i'n+n'4:-2ra (17>n*) (50) 
, • j ~ti . \mJ~,m ]a..., , _ , 

m = 0  

(see Appendix IV). 

The particular forms of Rn,n,(E) with their numer- 
ical examples are given in Appendix V. 

2.5 General expression for the joint probability distri- 
bution of  complex-valued structure factors 

By substituting the relations (24), (29), (30), (31), (33) 
and (35) into the inversion formula (36) and by taking 
account of (42), the joint probability distribution funct- 
ion of complex structure factors can be derived as fol- 
lows: 

P(EI,. . ., Era) 
1 - exp { - ( E  2 + . . .  + E 2 ) )  

7~ m 

[ Z 3 Z 4  {,~,4 _ ½,~,22} + ~ @ 2  ~V'33 x 1+ --g--r3+ -~-  

Z 3 Z 4  
AV_ ~_z5 {,~r'5 __,~'32} _ [_ ~ { "~V'43 - ½"~V'322} 

+ - Iv z333+... ] , (51) 
where 

,~V'a. ".f ~ X • • • 
J~{ ("v '  + ~p*') + .  • • + (Wp' + cop*') } = a Z{(~p"" + ~p*"")  + . . .  + (cop"" + oJv*"") } = f  

" ' "  

o); og' 
P 

s - 1  
x exp [2hi Z [ { ( @ - a ; ' ) + . . .  + ( c ~ " - @ ' " ' ) } h l + . . .  + { (c@-co; ' )+ . . .  + (o9~" -og~,'"')}hmltv] 

p = 0  

x K:v(,p'+...+,,"").z(,,*'+...+~v ..... )(El)...Kz(~ov'+...+o~p"'9.Xeo,*'+...+o), ..... )(Em) 
s - - I  s - - I  

×6[ Z R v { ( @ - 4 " ) h l + . . .  +(c@-co;,)hm)]. . .6[ Z" R~o{(~" -4"" )h1+ . . .  +(co•"-co;'"')hm}] • 
p = 0  p = 0  

(52) 

I" Equations (37) and (42) are to be compared with the 
inversion transformation formula given by Klug [1958, equ- 
ation (1.16)] for the case of centrosymmetry as follows 

I= Inversion of {exp (½U2)R n } 

_ 1 f¢o exp (--½U 2) (iu) n exp (-iuE) du 
2n J -  co 

= (1V~) exp ( -  ½EZ) Hn(E), 

where Hn(E) is the Hermite polynomial of degree n. 

.~ This formula corresponds to the following one as given 
for the case of centrosymmetry 

(Hn(E)) H.(E), 1 Z P(E)= ~ exp (--½E 2) 
n! V 2 -  n ~ 0  

where 

(Hr,(E)) = _ ooHn(E) e(E)dE " 
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It is again noted that the series on the right hand side 
of equation (51) has the same form as given by us (1964) 
for the case of centrosymmetric crystals except for a 
difference in the definition of Xao...r. The higher order 
terms such as O ( N  -~/~) and O(N -2) are omitted in (51), a 
since they can be looked for in our previous paper. 2 
Kn,n , (EYf  in (52) are the orthogonal functions given 
by (43) and (44); the other notations in (51) and (52) 
have the same meaning as in the preceding §§ 2.1 and 2.3. 3 

Equation (51), with (52), is a general expression for 
the joint probability distribution of complex structure 4 
factors with the form of a series based on orthogonal 
polynomials, and is applicable to any non-centro- 
symmetric space group. 

3. Some examples  of  calculations of  joint probabilities 5 

In this section are shown some examples of calculations 
of the joint probabilities for the space group P 1. First 
let us start from a particular example of calculation of 
the quantities Zab...t in the joint probability distribut- 
ion (51). 

3" 1 Examples  o f  deriving Xab...t 

It has been shown in the earlier paper (Naya, Nit ta  
& Oda, 1964) that Z'ab.../s are successively constructed 
from those of lower degree to higher ones in the case 
of centrosymmetry. The same holds also in the present 
case of non-centrosymmetric groups. Thus, let us put 
forward an example of calculation of Zab...t for three 
structure factors E1 = Eh~, E2 = Ehz, E3 = Eh~ with indices 
which are related to each other by h~ nt-hz-b h3 = 0. 

In this example, relation (52) gives Za in the form 

1 
Z a =  Z 

-+-*+B+B*+~+~*=~ a!a*!fl!fl*!y!7*! 

× &.~,(e~)KB.e,(e2)K~.~,(e3)6{(~ -~*)h, + (/~-/~*)h2 
-b (y-y*)h3}.  (53) 

The non-vanishing condition of 6 { . . .  } is written 

(a -- c~*)hl+ (fl-fl*)h2-t- (y - 7")h3 = 0 ,  (54) 
o r  

~-~* =/~-/~* =~,-~,* (55) 

There is another condition for the summation 

+ a* + fl + fl* + 7+ ~,* = a .  (56) 

The particular partitions of the non-negative values of 
a, a*, fl, fl*, y, 7" are allowed by (55) and (56), as shown 
in Table 1. 

I" Though Kn.n* (E) can be also rewritten 

Kn,n* ( E ) = K n , *  n * ( E ) = ( -  1)nn!Ln (n* - n ) ( E 2 ) E  n* -n  

= ( - 1 )  n* n*! Ln* (n-n*)(E2)E*n-n* , 

the form (43) with (44) will be more convenient. 

Table 1. Possible parti t ions o f  c~, c~*, fl, fl*, y and y* 
satisfying equations (55) and (56) 

The last column gives the values of 1/(~! ~*!fl!fl*! ~,! ),*!). 

~* fl fl* ~ ~* a ~ ~* fl fl* ~ ~* 

1 1 0 0 0 0 1 6 3 3 0 0 0 0 
0 0 1 1 0 0 1 0 0 3 3 0 0 J- 36 
0 0 0 0 1 1 1 0 0 0 0 3 3 ~- 

2 2 1 1 0 0 
1 0 1 0 1 0 1 0 0 2 2 1 1 ¼ 
0 1 0 1 0 1 1 1 1 0 0 2 2 ¼ 

2 2 0 0 1 1 ¼  
2 2 0 0 0 0 ¼  1 1 2 2 0 0 ¼  
0 0 2 2 0 0 ¼  0 0 1 1 2 2 ¼  
0 0 0 0 2 2  ¼ 2 0 2 0 2 0  ~ 
1 1 1 1 0 0 1 0 2 0 2 0 2 ~ 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 0 1 1 1 

7 3 2 1 0 1 0 1 ½  
2 1 1 0 1 0 ½ 1 0 3 2 1 0 A- 12 
1 0 2 1 1 0  ½ 1 0 1 0 3 2  ~ 
1 0 1 0 2 1 ½  2 3 0 1 0 1  ~ 
1 2 0 1 0 1 ½  0 1 2 3 0 1  ~ 
0 1 1 2 0 1 ½  0 1 0 1 2 3  1 i 2  
0 1 0 1 1 2 ½  2 1 2 1 1 0 ¼  

1 0 2 1 2 1  l 
2 1 1 0 2 1  ¼ 
1 2 1 2 0 1  ¼ 
0 1 1 2 1 2 ¼  
1 2 0 1 1 2 ¼  

From (53) with Table 1, we have 

~F3 = Klo(E1)Klo(E2)Klo(E3) + Km(EI)KoI(E2)K01(E3) 

= 2 R l o ( E 1 ) R l o ( E 2 ) R l o ( E 3 )  COS (~1 + (/02 + (~3) 

= 2E1E2E3 cos (qh + (P2 + q~3), (57) 

~'4 = ¼[K22(EI) q- cyc.] + [K11(E1)K11(E2) + cyc.] 

=¼[Rz2(E1)+cyc.]+[R11(E1)R11(E2)-t-cyc.] , (58) 

• ~5 = ½[K21(E,)Klo(E2)Klo(E3) "-k cyc.] 

+ ½[ K12(E1) Koa (E2) Ko~ ( E3 ) + cyc.] 

= [R21(E1)Rm(E2)Rlo(E3) -t- cyc.] c o s  (~1 31- ~02 "Jr- ~03),(59) 

and so on. Knn , (E)  and Rnn , (E)  stand for Kn,n , (E)  
and Rn,n , (E)  respectively for the sake of simplicity. 

Zab(hb hz, h3) or, more generally, Zab...r(hl, h2, h3) 
can be constructed from those obtained as above, 
if the following relationships are used. The definition 
(52) gives Xab the form 

Z a b  = Z Z 
~+~*+fl+fl*+~,+y*=a ~,'+ c,*'+fl'+ B*'+v'+ y*'= b 

1 
× 

a!a* !fl!fl* !7!~* !ct'!c~*'!fl'!fl*'! / !7" ! 
x K~+~,..+~.,(Ex)Kp+a,,p.+~.,(E2)K~+7,,.+,.,(E3) 

x 6{(c~ - ~z*)hx + (fl-fl*)h2 + ( y -  7")h3} 

x a{(~' -c~*')h, + (fl' - f l*')h2 + ( / -  y*')h3} . (60) 

The product of Z'a and Z'b gives 
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Za~,b = Z Z 
cx+o~*+fl+fl*+y+y*=a a'+a*'+fl'+13*'+y'+y*'=b 

1 
x ~l,v*lltlR*Ivlv*l~'Icy*'IB'IB*'Tv'Iv*'l 

x K~,.,,(E1)K<~.,.(E1)Ka.,o,(E2) 

× K~,.e,,(E2)K,,~,(E3)K~,.~,,(E3) 

× a{(O¢ -- ~*)hl q- (fl -fl*)h2 + (y - y*)h3 } 

x f i{(~ '-  c~*')hl + (.fl'-fl*')h2 + ( y ' -  y*')h3}. (61) 

Comparison of (60) with (61) reveals that  (60) is ob- 
tainable from (61) only by replacing K~.~,(E1)K<~,,(EI) 
of (61) with K~+~,~,+~,,(E1), etc. Thus, if we define a 
formal product 

K,~,~,.(E1) * K~,.~..(E1)- K=+¢,~,+~,,(E1), (62) 

we can obtain Xab by 

Xab = Z,~ * X~, . (63) 

For example, ~v'33 is given by 

$ 3 3 = $ 3  * S3 = {Klo(E1)Klo(Ez)Klo(E3) 

+ gox(E3gol(&)gol(E3)} * {KIo(&)K,o(E~)Klo(E3) 

+ KoI(EI)Kol(E2)Kol(E3)} 

= Kzo(E1)K2o(E2)K2o(E3) + Ko2(E,)Ko2(E2)Ko2(E3) 

+ 2Kll(E1)K11(E2)K11(E3) 

= 2R20(E1)R20(E2)R2o(E3) cos {2({01 + {02 + {03)} 

+ 2Rn(E1)Rn(E2)R11(E3), (64) 

and 

,~V'43 =,~V' 4 * ,~V'3= {¼[K22(E1)+cyc.]+[K11(E1)K11(E2) 

+cyc.]} • {Klo(E1)K~o(Ei)Klo(E3) 

+ Kol(E1)Kol(E2)Kol(E3)} 

= ¼{[K3z(E1)K~o(E2)K~o(E3) + eye.] 

+ [K23(E1)Ko1(E2)Kol(E3) + eye.]} 

+ [K21(E1)K21(E2)K1o(E3) + cyc.] 

+ [K12(E1)KI2(E2)Kol(E3) + cyc.] 

= ½[R32(E1)R10(E2)R~o(E3) + cyc.] cos ({01 -[- {02 -1- ~3) 

+ 2[R21(E1)R21(E2)Rlo(E3) + cyc.] cos ({01 + {02 + {03), 
(65) 

etc. In general, it can be proved that  

Xab...y= Xa * S,~ • . . .  • X I .  (66) 

Therefore, when the necessary Z'ab...fls for the ex- 
pansion terms up to O(N -5n) in (51) are to be derived, 
it is sufficient that  the partitions of 0¢, c~*, fl, fl*, y, y* 
are sought for Z2, ,~r'3, ~r'4, ~V'5, ~r'6, ~r'7 and then Xa~,...fls 
are step by step constructed therefrom by the use of 
(66). This procedure is useful in the calculation up to 
the higher orders for any other combinations of struct- 
ure factors E l , . . . ,  Era. [Refer to equation (40) in our 
paper (Naya, Nit ta  & Oda, 1964)]. 

3.2 Joint probability distribution o f  the complex-valued 
structure factors El = Eh,, E2 = Eh2, E3 = Eh3 under hi + 
he+h3 =0.  

Introducing Xa~...y of {}3.1 into the general expres- 
sion of joint probability distribution (51), the joint  
probability distribution of El, E2, E3 is given as 

1 
P(E1, E2, E3) = --~ exp { - ( E  2 + E 2 + E~)} 

x [ 1 + 2Z3Rlo(E1)Rao(E2)Rao(E3) cos ({01 + {02 -[- (/93) 

Z4 [R22(E1)+cyc.]+ Z~[R20(E~)R20(E2)R20(E3) 
4 

x COS {2({01+ 992+ {03)}+ R11(E1)Rll(E2)R11(E3)] 

-- Zs[R21(E1)RIo(Ez)Rlo(E3) + cyc.] cos ({01 + {02 + {03) 

Z3Z4 
-- ~ [R32(E1)R1°(E2)R1°(E3)+cyc'] 

× cos  ({01 -~- {02 Jr- {03) 71- Z3[½R30(EI)R30(E2)R30(E3) 

× cos  {3({01 -]- {02 -t- {03)} -t- .R21(El)R21(E2)R21(E3) 

X COS (991 "q- {02 -~- 993)] "q- Z6{-~[R33(E1)+cY c.] 

-- Rn(E1)Rn(Ez)R11(E3) -I}R20(E1)R20(Ez)Rzo(E3) 

x cos{2(991 + {02 Or {03) } } -- Z3Zs{[R31(E1)R20(E2)R20(E3) 

+ cyc.] cos {2({01 + {02 + {03)} + [R22(E,)R11(E2)Rll(E3) 

+ cyc.]} + Z]{3-3-3-~[R44(Ea)+cyc.] 

+ ~-i~[R22(E1) R22(E2) + cyc. ] } 

Z2Z4 ([R42(E1)Rzo(E2)R20(E3) + cyc.] 
4 

x cos {2(991 + {02+ {03)} 

+ [R33(EI)Rn(Ez)Rn(E3) + cyc.]} 

+ Z4(1-1-1~R40(EI)R40(E2)R40(E3) cos  {4({0/91 Jr- {0/92 -}- {03)} 

• .~-IR31(EI)R31(E2)R31(E3) cos  {2(991-~- {02q-993) } 

+ ¼R22(E,)R22(E2)R=(&)} 

+ Z7{-}[R32(&)Rxo(E2)RIo(E3) + cyc.] cos ({01 + {02 + {03) 

Jr- ½[R21(E1)-R21(E2)R10(E3) q- cyc.] cos  ({01 -'[- {02 -[- {03) } 

+ Z3Z6{~[R43(E1)Rlo(E2)R10(E3) q- cyc.] 

× cos  ({01 + {02 + {03) - ~ & l ( & ) R 2 1 ( E ~ ) R ~ ( E 3 )  

× COS ({01 or- 992 2i- {03) --3R30(E1)R30(E2)R30(E3) 

× cos {3({01 + {02+ {03)}} 

+ Z4Zs{¼[R43(E1)Rlo(Ei)R10(E3)  + cyc.] 

× COS (N1 + 992 + q93) + 2[R32(E1)R21(E2)Rlo(E3) 

+ perm.] cos ({01 + 992 + {03)} 

-Z23Zs{½[R41(E1)R3o(E2)R3o(E3)q-cyc.] cos  {3(991 

-Jr- {02 -q- {03)} q- [R32(E1)R21(E2)R21(E3) "t- cyc.] 

)< COS (991 -[- {02 "[- {03)) "Jr- Z3Z2{1-~[R54(EI)R10(E2)Rlo(E3) 

+ cyc.] cos ({01 + {02 -Jl- 993) -at" -~[R32(E1)R32(E2)R1o(E3) 

AC 19-4 
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+ cyc.] c o s  (~O 1 -Jc q92 n t" ~03)} 

- -  Z l Z 4 ( - ~ 2  [R52(EOR30(E2)R30(E3)  + cyc.] 

x cos {3(~oa -t- ~oz + (o3)} + ¼[R43(E1)R21(E2)R21(E3) 

+ cyc.] cos (~0t + ~2 + ~031} 

+ Z~{6-~Rso(E1)Rso(E2)Rso(E3) cos {5(~01 + ~02 + (,03)} 

+ 1A-ffR4a(Ea)R4I(E2)R4x(E3) COS {3(~01 + ~O 2 -+- ~03) } 

+-~R32(E1)R3z(E2)R32(E3) cos (~0a + (P2 + (P3) } 

+ . . . . . .  ] .  (67) 

This result is to be compared with equation (III-2) 
in the previous paper (Naya, Nitta & Odd, 1964), 
which dealt with an example on P i with three real 
structure factors E 1 = E:I, E2 = EzS2, E3 = E3s3 under 
the condition h l + h 2 + h 3 = 0 .  Both results are in a 
complete correspondence to each other. 

Bertaut (1956) and Karle & Hauptman (1956) car- 
ried out also the calculation of the joint probability 
distribution of the complex structure factors on the 
same example as the present one. However, their re- 
suits were only to the approximation O(N-~), namely 
up to the second term in (67). 

3"3 Probability distribution of magnitude of a single 
complex structure factor: P(E) 

In this section, it is shown that the probability distri- 
bution of magnitude of a single complex structure 
factor, or Wilson's probability distribution, can be 
treated as a simple case of the general relation (51). If 
an expansion series up to O(N -2) is considered, the 
probability distribution of a complex structure factor 
P(E) has the form 

1 _E2)[1 Z4(,~,4 _ ½,~v,22 } P(E) = -~-exp ( + 

d I- Z6( ,~6  --,~v'42 q- ½,~T'222} 

-1- - ~  {~v'44--~v'422-t-¼S2222}-t - . . . . . .  ] , (68)  

in which 27ab...:'s with the subscripts of odd values are 
not included. It is easily shown that there are relations 

Z4-½Z22= -¼R22(E) , Z6-Z42 +~Z~z~=-}R33(e) , 

~v44-~422q-4-14S2222=~-I~R44(E ) . (69)  

Substituting (69) in (68) and integrating (68) multiplied 
by E with regard to ~0, the probability distribution of 
the magnitude of a single complex structure factor is 
given as 

p(E)-fI~P(E)Ede= 2E exp ( - E  2) 

Z4 R22(E)+ Z6 R33(E)+ Z• R44(E)+ ] x 1 - - ~ -  - ~  -~ -  . . . .  

(7o) 

This result is the explicit form of the formal expression 

P(E)= P(E)Ed~ 
0 

= 2 E  exp ( - E  2) -~ (Rn,n(E)) ,=o (nI) z Rn,n(E), (71) 

which can be derived by the integration of (47) with 
regard to ~o. Here it may be noted that the expression 
shown by Bertaut [1956, equation (28)] is nothing but 
the non-vanishing first two terms of (71). 

Now let us calculate the expected value for ]EI~ = E~ ° 
by the use of (70). Using a relation 

l:2E~°+l exp (-E2)Rn,n(E)dE 

[p+2 \  =F ~ ) 2 - n p ( p - 2 ) ( p - 4 ) .  . .[p-(2n-2)] (72) 

(Appendix VI), we obtain 

Z4 

Z6 + --~ p (p -2 ) (p -4 )  

Z2 ] (731 
+-3i2-  p ( p - 2 ) ( p - 4 ) ( p - 6 ) +  . . . .  

In a particular case of equal atoms, for which Z4 = N -1, 
Z6 = Z ] = N -2,  

16N p(p-2) 

1 ] 
+ 4608N2 p(p-2)(p-4)(9p+ 10) + . . . .  (74) 

The formula (74) agrees with that calculated by Karle 
& Hauptman (1958) from their new joint probability 
distribution method. 

3.4 Joint probability distribution of two structure in- 
variants: P(~bl, 42) 

Consider five complex structure factors EI, E2, E3, 
E4, E5 related by ha + hE + h3 = 0 and ha + h4 + h5 = 0. 
Then, 

~Pl -- ~ohl + ~oh, + ~oh3 - ~01 + ioz + I03 
and 

tJ~Z ~--- q)hl -t- q)h4 Jr- ~h5 "~ (/91 -t- ~04 "dv ~O 5 (75) 

are the two structure invariants. As was suggested by 
Karle & Hauptman (1956), these two structure invari- 
ants possess a sort of interaction not only between 
their magnitude but also between their signs. 

To study more explicitly the nature of the interaction, 
calculation of the joint probability of these two struct- 
ure invariants is carried out as follows. P(EI, E2, E3, E4, 
Es) is set up by using the fundamental equation (51), 
and then, following the relation (21), the joint probab- 
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ilities of phase angles given in §1 are obtained. The 
calculation up to O(N -3/2) shows that the joint prob- 
ability distribution for the two phases ~,, ~2 corres- 
ponding to (11) is given by 

1 P(~l, '~2)= -~-~-[1 +2<cos ~,7 cos ~1+2<cos e,~> 

× COS ~b2+2(COS 2¢ , )  cos 2~1 +2(cos 2qb2)COS 2~b 2 

+ 2<COS(q01 + ~2)> COS (~1 + ~2) + 2(cos (¢1 -¢2)> 

x cos (¢1 -¢2)+2(cos  3#1) cos 3¢1 +2<cos 3¢2) 

X COS 3q02 + 2(COS (2¢x + ~2)> COS (2q51 + (~2) 

+ 2(cos (¢~ + 2¢h)> cos (~1 + 2(/)2) + 2(cos (2¢, 

--~2)> COS (2~/)1- (~2) n t- 2<COS ((/)1--2fib2)) COS (~1 

- 2 ~ 2 ) +  . . . . .  ] ,  (76) 

where the expected values are given by 

<COS ~1> = Z3RIo(E1)RIo(E2)Rlo(E3) 

Z5 [R21(E1)R1o(E2)R,o(E3)+cyc. ] 
2 

Z3Z4 
4 [R32(E1)Rl°(Ez)R1°(E3)+cyc'] 

+ Z___3~___4_4 R1o(E,)Rxo(E2)(Rlo)(E3)[R22(E1)+cyc.] 

z] 
+ - ~  R21(E1)R21(E2)R21(E3) 

- Z3Rao(Ea)Rxo(Ez)Rao(E3)Rax(EI)R11(Ez)Rn(E3) 

- ZsR1o(E1)Rlo(E2)R,o(E3)[R11(E4) + Rn(Es)] 
+ Z3Z4Rao(E1)Rlo(E2)R1o(E3)Ra1(E4)Rli(Es) 

+ Z]R21(E1)RIo(E2)Rlo(E3)Rn(E4)Rn(Es) 

- Z]R,o(EI)R,o(E2)R,o(E3)R,,(E,)R,I(E4)Rn(Es), (77) 
and 

<cos ¢2> = ~ ,  (78) 

(The symbol M means that the set E~, Ez, E3 and the set 
El, E4, E5 in the former equation are interchanged with 
each other). 

(cos 2¢1)= Z~ Rzo(EI)R2o(E2)R2o(E3 ) (79) -2- 

<cos 2~>=  ~ ,  (80) 

<cos ('~+ ¢'2)> 
= Z2R2o(E1)Rao(E2)R,o(E3)R,o(E4)Rlo(Es), (81) 

<cos (~, -,~2)> = Z4R,o(E2)R,o(E3)Rlo(E4)RIo(E9 

+ Z~R~(E3R, o(E))Rlo(F~3)R,o(E4)R~o(E~), (8:2) 

<COS 3~1> = Z] R3o(E1)R3o(E2)R3o(E3 ) (83) --(- 

<cos 3¢h> = :~, (84) 

(cos (2¢'1 + ~2)) 

_ Z] R30(E,)R20(E2)R20(E3)Rlo(E4)Rlo(E5 ) (85) 
2 

(cos (~1 + 2~2)) = :~, (86) 

(cos (2~,-¢~)> 
= Z3Z4Rlo(E1)R20(E2)R20(E3)Rlo(E4)RIo(Es) 

z] 
+ -5-  R2~(E,)R20(E2)R20(E3)&0(E4)R,0(Es), (87) 

<cos (¢ , -2~2)> = ~.. (88) 

In the case of equal atoms for which Z3 z = Z4 = N- ' ,  
it proves that relations (81) and (85) become equal to 
(82) and (87), respectively. However, these equalities 
do not hold for non-equal atoms. Thus, the calculation 
of (76) in the approximation to O(N -3/2) shows, with 
(16), (17) and (18), that the correlation between the 
invariants ~bi and ¢2 appears only in their magnitudes 
in the case of the equal atoms, while the correlation is 
quite appreciable not only in their magnitudes but 
also in their signs in the case of non-equal atoms. 

Conclusion 

We have presented a systematic theory to derive prob- 
ability formulae which may be used for determination 
of the phase angles in non-centrosymmetric structure 
factors; that is, from the joint probability distribution 
P(~01,..., 9m) for a set of the related phase angles, we 
derive the corresponding expected values via reduced 
probabilities, and, finally, the various conditional prob- 
abilities for structure invariants. The functional form 
of P(~0, . . . . .  ~0m) in equation (2) or (7) has an orthogo- 
nal expansion form, corresponding to the similar form 
of the sign joint probability distribution P(s , , . . . ,  sin) 
given in our previous paper for the centrosymmetric 
case. The results obtained seem to be of significance in 
the practical procedure for determining angles of struct- 
ure invariants and their individual phase angles. 

By making use of general space-group-symmetry 
operators, our calculation of the joint probability di- 
stribution of noncentrosymmetric structure factors 
P(E1, . . . ,  Era) has been carried out in a more general 
form than in other works. As results, we obtained the 
general expressions (51) and (52) for the joint prob- 
ability distribution of complex structure factors. This 
probability distribution can, in principle, be applied to 
the case with a greater number of structure factors in 
any non-centrosymmetric space group. 

These equations have the form of an expansion series 
of the orthogonal terms with the weighting function 
(1/zc m) exp { - ( E ~ + . . .  +E2)}. This expansion has 
not been found in the results given by Bertaut (1956) 
and Karle & Hauptman (1956). The Laguerre poly- 
nomials found in this paper correspond to the Hermite 
type ones found by Bertaut (1955) in the case of 
centrosymmetry. 

AC 19-4" 
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APPENDIX I 
Moment generating function 

The method of the moment generating function was 
used by Klug (1958) for deriving the joint probability 
distribution of the real structure factors of centro- 
symmetric crystals. In this Appendix it is shown how 
to extend the method to the case of complex-valued 
structure factors. 

We write the trigonometric structure factor {i and 
the normalized structure factor Eh in the following 
forms, 

~j(h) = r/:(h)+ i~j(h), Eh=Rh+iIh .  (1-1) 

These functions are related by 
t 

Eh = ~v" q/j~j(h), ( I - 2 )  
]=1 

where VJ is the normalized atomic structure factor of 
the j th  atom, t (=N/S)  the total number of atoms in 
the asymmetric unit. (I-2) with (I-1) gives 

t t 

Rh = Z q/jr/:(h), Ih = ~ g/:~:(h). (1-3) 
j= i  j = l  

Let 9Yt(v~,..., vm, w b . . . ,  win) be the moment gener- 
ating function. By the use of the mathematical expect- 
ation operator (2 (Klug, 1958) and taking into account 
of relation (I-3), this function is expressed as 

~ ] f ~ ( V l , . . . ,  Vm, W I , . . . ,  Wra): : -~ fJ~(Ui , . . . ,  U r n )  

= (2 e x p  [VlRhl + V2Rh2 + . . .  + VmRhm] 

x exp [Wflh~ + WzIh~ + . . .  + WmIh~] 
t t 

=(2exp [{Vl X V:/j(hl)}+{v2 X V:/j(h2)} 
j = l  j = l  

t 
+ . . .  + {v~ 2: ~wj(h~)}l 

j = i  

t t 

xexp[{w, X Vj(:(h0}+{w2 X V:~:(h2)} 
j = l  j = l  

t 

j = l  

=(2 e x p  [Vl{Vlr/l(hx) + Wl~i(hx )} + ~/1 {v2r/l(h2) 

+ w~¢,(h~)} + . . .  + ~,{V~l(hm) + w~¢,(h~)}] 

x (2 exp [Uff2{Vl/'12(ha)+ w~(2(hx)} + V2{v2r/2(h2) 

+ w~,(h~)} + . . .  + ~,~(v~(h, , )  + wm¢~(hm)}] 
X 

x (2 exp [Vt{v:#(hl)+ w~t(hl)} + Vt{v2r/~(h2) 

+wzfft(h2)}+... +~ut{Vmqt(hm)+Wm~t(hm)}]. (1-4) 

Noting that 
u = v + i w ,  ~ = r / + i ~ ,  

we have 
v~+w~=k(u*~+uU) .  

Then 

~9l(ub..., urn) = e exp Va {1(hl) + -~-{t  (ha) 

+ . . .  + v,1 ~l(hm) + -~-  ~;'(hm) 

o1,} 
x (2 exp V2 {2(ha) + -~- {2 (hi) 

+ . . .  + g/2 ~2(hm) + T ~2 (hm) 

ul ~ (hO} x e exp [Vt {-~-- ~t(h,) + -~- 

+ . . .  + g/t ~t(hm) + - ~  ~*(hm) • (1-5) 

Comparison of this expression with Klug's formula 
[1958, equation (2.2)] indicates that our moment gener- 
ating function is also similar to Klug's (C.6); namely, 

9X(Ul,..., urn) -- exp -S-- £n • (1-6) 
n 

.~n is given, in the present case, by 

~+~*)+...  +(o)+co*)=n 

× × 

(--~) ~" (-~-) °' /Um ] °'" (1-7) 
x . . .  \ 2 1  ' 

in accordance with the moments defined by (23). The 

coefficients { 1 = ~  ~ + :  { 1 ~o,+,o. \ ]/'zel/ ' ' " '  \~--~m ] in (I-7) 

have been so introduced that the normalization con- 
dition (IE]2)=I can be kept in cases of z, e # l  (cf. 
Bertaut, 1960). In the particular case that the degree 
n = (c~ + c~*) + . . .  + (o0 + co*) is equal to 2, the relations 
(24) and (29) give 

ka0...0_ bin0...0_ 10...0 -- 722S81 , ~010...0-- T2S82, • • •,  

0...01 __ 2 ko...ol- Z sem , (1-8) 

and for all the other cumulants of the degree 2 

k'*...~*=O (1-9) OG..O) 

From (34), (I-7), (I-8) and (1-9), the first term in (1-6) 
corresponding to n = 2 is given by 

exp[-~ L £2] =exp [¼u~'ua+... +¼urn*urn] 
1 2 =exp {4(u l+ . . .  + u ~ } .  (1-10) 
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This relation and (1-6) lead to the formula (32). 
Inversion transformation of the moment  generating 

function (I-6) is also easily obtained by an extension 
of Klug's method, as follows 

P ( E , , .  . . ,  E r a ) -  P ( R I , .  . . ,  R m ,  I 1 , .  • . ,  Ira)  

_ 1  I ~_ IS 9X(ivb . ivm, iwl . iWra) (2~Z) 2m oo''" m " "  ' " "  

x exp [ - i {(v,Ra + Wl/1) + . . .  + (vmRm + Wm[m)}] 

x dv l . . ,  dvmdwl. • • dwm 

- (2n)zm _oo9~(iul, . . . ,  iUm) 

[ {(o, • " )  
xexp - i  -~-E~ + ~ - - E a  

+ . . .  + E* "-{" m d u l . . . d u m .  (I-11) 

A P P E N D I X  H 

The Weber-Sonine integral formula is given by 

oo F 
Io Jr(at)  e-~2~2 t u-1 d t = 

2pU F ( v +  1) 

,F, ; v+  1; ~-~2 ' (II-1) 

9l(v+/z) > 0, [argpl < ~- ,  a > 0  . 

When p=½,  v = n - n * ,  / t = n + n * + 2 ,  a = E  and t = u  
are introduced in (II-1), we obtain 

I ° 
( -  1)n* exp ( - ¼  u z) J , -n*(Eu)u  n+"*+l du 
2n+n*+l o 

= ( -1 ) -"  r ( n +  1) E-- ." 
F(n - n *  + 1) 

x ~ F x ( n + l ; n - n * + l ;  - E Z ) ,  (II-2) 

where the Kummer  function 

~Fl(a; b" x) - ~ I ' (a+m) I'(b) xm 
' m=O F(a) F(b  +m) ml (11-3) 

has the following property: 

1Fl(a; b; x )=eZ lF i (b -a ;  b; - x )  . (II-4) 

If  we substitute a = n +  1, b = n - n *  + 1 and x =  - E  2 in 
(II-4), the following relation is obtained 

1Fl(n+ 1 ; n - n * +  1 ; - E  2) 
=exp  ( - E Z ) l F l ( - n * ;  n - n * + 1 ;  Ez) .  (II-5) 

The Kummer  function 1F~ and the Laguerre polyno- 
mial L~)(x) are related by 

zT)(x) = r (v + ~  + 1) 
r ( v +  l) F(lz+ l) 1Fl(-v;  lz+ l ; x) . (I1-6)]" 

If  we substitute v=n*, lz =n -n* ,  x = E  2 in this relation, 
then the following relation holds" 

1F1 ( - n * ;  n - n *  + 1 ; E z) 

_ /-" (n - n *  + 1) F(n* + 1) f(,,-n') (E z) (II-7) 
m X . , n .  . r(n+l) 

Substitution of these relations (II-2), (II-5) and (II-7) 
into (41) leads to the expressions (42), (43) and (44). 

A P P E N D I X  HI 

Let us prove the orthogonality relation 

- -  exp ( - E  2) K*,,,(E) Km,m,(E) E dEd~o 
0 0 

= nln*t OnmOn,m,, (III-1) 

found among the functions Kn,n,(E). If  we substitute 
Kn,n,(E) = Rn,n,(E) exp { - i ( n  -n*)~0} in the integrand 
of the left hand side of (III-1), then the following re- 
lation is obtained; 

I ~°exp ( -  E 2) Rn,n.(E) Rm,m.(E) E dE 
0 

x - -  exp {i ( n - n * )  ~0} exp { - i  ( m - m * )  ~o} d~o 
7~ 

= f~exp ( - E  2) Rn,n.(E) 
t l  t, J 

(III-2) 
When n - n *  is not equal to m - m * ,  (III-2) becomes 
zero. If  n - n *  is equal to m - m * ,  (111-2) is written as 

f oo ( - E 2 )  Rn,n,(E) Rm,m,(E) 2 E dE exp 
0 

S = - E Ln, ( E )  Lm.(E ) ( 1),*+m*n,!m,l e x p ( _ E  z) 2u ca) z cu) 2 
0 

× 2 E dE,  (111-3) 
where 

l u - n - n *  = m - m *  . 

With the orthogonality relations for the Laguerre poly- 
nomials 

Io  (v+/z)l (II1-4) e -z  x u L~)(x) L~)(x) dx = Ova. vt ' 

(III-3) is expressed as 

I~exp ( - E  2) Rn,n.(E) Rra,m.(E) 2E  dE 

(n* + l.t)! 
= ( - 1 )  "*+m* n*! m*[ On,m, 

n*! 
-- n[ n*[ On,m, • 

(1114) 

"f It is of interest that the Kummer function is related to 
the Hermite polynomials as 
H2v(X) = ( -  2) v v! Lv (-*)(x2) = ( -  1)v (2v- 1)!! 1F1(- v; ~ ; x2), 

H2v+l(X) = (-2)v vl ]/2x Lv (~)(x2) 
= ( -  1)v(2v+ 1)!! ]/2xIFI(-v" a. , ~ ,  X 2)  
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A s  t h e  s u m m a r y  o f  t h e s e  resu l t s ,  w e  c a n  o b t a i n  t h e  
o r t h o g o n a l  r e l a t i o n  ( I I I -1 ) .  

A P P E N D I X  I V  

T h e  a s s o c i a t e d  L a g u e r r e  p o l y n o m i a l s  sa t i s fy  t h e  re la-  
t i o n  

(-u)  ( - 1)u v! 
L v + u ( X ) -  (v+lz)!  xUL~)(x )"  ( I V - l )  

S u b s t i t u t i o n  o f  r e l a t i o n s  s u c h  as x = E  z, - l z = n - n * ,  
v = n  i n t o  ( I V - l )  g ives  t h e  f o l l o w i n g  r e l a t i o n "  

r (n -  n*) l'l ! - -  L .  ( E ) .  ( I V - Z )  ~"" (EZ) = n*!  ( -  1)n*-n E2(n*-n)  ("*-") z 

T h e n  

Rn,n , (E)  = ( - 1) n• n*! En-n* ~n*r(n--n*)tl~Z~.~: 

= ( -  1) n n! E n ' - n  L,("*-")(E z ) =  R n , , n ( E ) ,  ( IV-3)  

w h i c h  p r o v e s  t h e  s y m m e t r i c a l  p r o p e r t y  o f  Rn,n . (E)  in  
n a n d  n* .  

A s  wel l  k n o w n ,  t h e  a s s o c i a t e d  L a g u e r r e  p o l y n o m i a l s  
a re  g i v e n  b y  

( - x ) J  ( v , p = 0 ,  1, 2, ) ( IV-4 )  L ~ ( x )  = ~ (:+_~') j ! . . . . .  
j=0 

T h i s  f o r m u l a  is r e w r i t t e n  with  j = v - m  as 

( - - X )  v-m 

L T ) ( x )  =,,=oZV (v+u) ( v - -m) !  ( IV-5)  

S u b s t i t u t i o n  o f  v = n * ,  l z = n - n * ,  x = E  z in  th i s  f o r m u l a  
g ives  

,* ( _ E Z ) n ' - m  
L(n-n')(lz'z~ = ~F (rim) (n* - -m)  W , ,  , ~ :  ( IV-6)  

m = 0  

T h u s  w e  o b t a i n  a n  exp l i c i t  f o r m  o f  t h e  p o l y n o m i c a l  

Rn,n , (E)  as f o l l o w s  

Rn,n , (E)  = ( - 1) n* n*! En-n* ~n*r(n--n*)t'P2~: 

n $ 
= X ( -  1)m m! (~) (~,*) E n+n'-2m , (n >_ n*) .  ( IV-7)  

m = O  

RI,O 

R2,o 
R1,1 

R3,0 
R2,1 

R4,o 
R3,1 
R2,2 

Rs,o 
R4,1 
R3,2 

R6,o 
R5,1 
R4,2 
R3,3 

Order 

1 

2 

0.6 
+ O.6OO 

+0.360 
- 0.640 

+0.216 
- 0 . 9 8 4  

+0.130 
-0 -950  
+0.690 

+ O.O78 
- 0 . 7 8 6  
+2.382 

+ 0.047 
- 0.603 
+3.327 
- 0-643 

A P P E N D I X  V 

Rn,n*(E) 

RI,o(E)= E 

R2,o(E) = E2 
RI,I(E) = E z -  1 

R3,o(E)= E3 
Rz,I(E) = E 3 - 2E 

R4,0(E) = E  4 
R3,x(E) = E 4 -  3EZ 
Rz,2(E) = E 4 - 4EZ + 2 

Rs,0(E) =E5 
R4, l(E) = E 5 - 4E3 
R3,z(E) = E5 - 6E3 

T a b l e  2. Particular f o r m s  o f  Rn ,n , (E)  

Order R n, n* (E) 

6 R6,o(E) = E 6 
Rs,I(E) = E 6 -  5E 4 
R4,2(E) = E 6 -  8E4 + 12E2 
R3,3(E) = E 6 -  9E 4 + 1 8 E 2 -  6 

7 RT,o(E) = E 7 
R6,1(E) = E  7 -  6E s 
Rs,2(E) = E 7 - 10E5 + 20E3 
R4,3(E) = E 7 - 1 2 E 5  + 36E 3 -  24E 

8 R8,0(E)=E8 
R7,1 (E) = E8 -- 7E 6 
R6,2(E) = E8 - 12E6 + 30E 4 
Rs,3(E) = E8 - 15E6 + 60E4-- 60EZ 

+ 6E R4,4(E) = Es - -  16E6 + 72E 4 -  96E2 + 24 

T a b l e  

0.8 1.o 
+0.800 + 1.ooo 

+ o.64o + 1.ooo 
- 0 . 3 6 0  o.ooo 

+0.512 + 1.o00 
- 1.o88 - 1.ooo 

+ o.41o + 1.ooo 
- 1.51o - 2.000 
- o .  1 5 0  - 1 - o o o  

+ 0.328 + 1.ooo 
- 1.72o - 3.000 
+ 2.056 + 1 .ooo 

+ 0.262 + 1.ooo 
- 1.788 - 4.000 
+4.662 +5.000 
+ 2-092 + 4.000 

3. Numerical  values o f  polynomials  R n , n , ( E )  

1 . 2  1 . 4  1"6 1 . 8  2"0 2-2 2.4 
+ 1.200 + 1.400 + 1.600 + 1-800 + 2-000 + 2-200 + 2.400 

+ 1.440 + 1.960 + 2.560 + 3.240 + 4.000 + 4.840 + 5.760 
+0.440 +0.960 +1.560 +2-240 +3-000 +3.840 +4.760 

+ 1.728 + 2.744 + 4.096 + 5.832 + 8.000 + 10.648 + 13.824 
- 0 . 6 7 2  - 0 . 0 5 6  +0.896 +2-232 +4.000 +6"248 +9.024 

+2.074 +3.842 +6.554 +10.498 +16.000 +23.426 +33.178 
- 2 . 2 4 6  - 2 . 0 3 8  - 1 . 1 2 6  +0.778 +4.000 +8.906 +15.898 
- 1.686 - 1.998 - 1.686 - 0 . 4 6 2  +2.000 +6.066 + 12.138 

+2-488 +5.378 +10.486 +18.896 +32.000 +51.537 +79.627 
- 4 . 4 2 4  - 5 . 5 9 8  - 5 . 8 9 8  - 4 . 4 3 2  0.000 +8.945 +24.331 
- 0 . 6 8 0  - 2 . 6 8 6  - 4 . 4 9 0  - 5 . 2 9 6  - 4 . 0 0 0  +0.849 +11.083 

+2.986 +7.529 +16.778 +34.013 +64.000 +113.381 +191.105 
- 7 . 3 8 4  - 11.681 - 15-992 - 18.477 - 16.000 - 3.749 +25.215 
+3.674 +0.313 - 4 - 9 3 4  -11 .091  -16 .000  -15 .947  - 5 . 1 9 9  
+4.240 +2-231 - 2 . 1 2 8  - 8 . 1 4 9  -14 .000  -16 .333  -9 -817  
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APPENDIX VI 

Derivation of formula (72) 

Let the integration of the left hand side of equation 
(72) be denoted by Qn, 

S ° Qn= 2 E~ +1 exp ( - E  2) Rn,n(E) dE .  (VI-1) 
0 

Substituting the polynomial 

R n , n ( E ) = ( -  1)nn!L~)(E z) (VI-2) 

into (VI-1), and then putting E2=x,  Qn is rewritten 

Qn = ( - 1 ) n n !  e-xxp/2L~)(x)dx,  (VI-3) 
0 

where L~°)(x) is the Laguerre polynomial Ln(x).  
In order to carry out the integration of (VI-3), it is 

convenient to make use of the generating function of 
Ln(x) ; namely, 

N Ln (x) t n - 1 x t (VI-4) 
,=0 ( l - t )  exp - ~  . 

Then, it follows from (VI-3) and (VI-4) that 

~ Qn (-t)n/n! = x x~/~ d x  
,=o oeXp - ~ (1 t) 

where 
i 

oO 

= (1 - - t )  p12 e-xXe/2dX, (VI-5) 
0 

X 
- ~ - -  = = S .  (1 - t )  

With the use of the well known relation 

we obtain 

(VI-6) 

Z Qn( - t )n /n !  = F  p____22 ( l_ t )p /2  " (VI-7) 
n = O  

Comparison of the coefficients of the terms t n on both 
sides of equation (VI-7) gives 

(vI-8) 
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Application of a System of Linear Structure-Factor Equations 
to the Structure Determination of LiB(OH)a* 

BY L. KUTSCHABSKY AND E. H(}HNE 
Institut fi~r Strukturforschung der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof, Germany 

(Received 19 February 1965) 

If the atomic parameters are known in two dimensions, it is possible to determine the atomic param- 
eters in the third direction with the help of a system (or systems) of linear structure-factor equations. 
The method has been used to determine the approximate structure of LiB(OH)4. 

Introduction 

Ott (1927) and Avrami (1938) proposed a method for 
the direct determination of atomic parameters from 
the observed Fobs(hkl) by means of a non-linear system 
of equations. This method has hitherto not been applied. 

Assuming a knowledge of the atomic parameters in 
one projection (e.g. xj, yj), the determination of the 

* Forming part of the doctorate thesis of L. Kutschabsky. 

third atomic parameters (zj) is possible with the help 
of a system of linear structure-factor equations if the 
structure factors of one particular higher level of the 
reciprocal lattice [F(hkL) with L constant] are used 
(Kutschabsky, 1965). 

Theory 

We shall limit our consideration to centrosymmetric 
structures. For the space group P I  the following struct- 
ure-factor equations hold (xj, yj known; L=cons t . ) :  


