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bond distance of 3-:023 A. A unique distinction between
these would have been impossible without the direct
location of the hydrogen atoms.

Table 5. Non-hydrogen-bonding intermolecular distances
less than 3-3 A between the heavier atoms

Atom I Atom;  in molecule at: Distance di;
C(5) o(7) x,y,z+(0,1,0) 3210 A
N(6) 0(2) Li+yi—:z 3-239
N(8) 0(2) ity —z 3-079
N(8) 0O(4) xt—yi+z 3-145
04) 0O(4) %,5,24+(1,1,0) 3-233

In addition to the least-squares refinement program
referred to previously the following computer pro-
grams were used in this analysis: IBM 7070 programs
for data processing (McMullan, 1964), Fourier syn-
theses (Chu & McMullan, 1962), structure factors
(Shiono, 1962) and IBM 1620 programs for the direct
method of sign determination (Beurskens, 1963) and
for the calculation of inter and intra-molecular geom-
etry (Chu, 1963).

I am very grateful to Professor G. A. Jeffrey for the
opportunity to work in his laboratory and for critic-
ally reading the manuscript. The research was sup-
ported by the U. S. Public Health Service, National
Institutes of Health, under Grant Number NB-02763.

Acta Cryst. (1965). 19, 734

THE CRYSTAL STRUCTURE OF bpL-ALLANTOIN

References

BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA,
B. O., MAacGiLLAVRY, C. H. & VEENENDAAL, A, L. (1955).
Acta Cryst. 8, 478.

BEURSKENS, P. T. (1963). Technical Report October 1963,
Crystallography Laboratory, University of Pittsburgh.

BEURSKENS, P. T. (1964). Acta Cryst. 17, 462.

Busing, W. R., MarTIN, K. O. & Levy, H. A. (1962).
ORFLS — A Fortran Crystallographic Least Squares Pro-
gram, ORNL-TM-305. Oak Ridge National Laboratory,
Tennessee.

CARON, A. & DONOHUE, J. (1964). Acta Cryst. 17, 544.

CHu, S. C. (1963). Technical Report No. 45, Crystallogra-
phy Laboratory, University of Pittsburgh.

Cuu, S. C. & McMuLLAN, R. K. (1962). Program No. 377,
1.U.Cr. World List of Crystallographic Computing Pro-
grams.

GROTH, P. (1910). Chemische Krystallographie. Vol. 3, p.
583. Leipzig: Engelmann.

HuGHEs, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.

Lipg, D. R. (1962). Tetrahedron, 17, 125.

McMuLLaNn, R. K. (1964). Unpublished work.

MCcWEENY, H. (1951). Acta Cryst. 4, 513.

PuLLMAN, B. & PuLLMAN, A. (1963). Quantum Biochem-
istry. New York: John Wiley.

ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.

SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G.
(1959). Acta Cryst. 12, 600.

SuioNO, R. (1962). Programs Nos. 330, 376, 1.U.Cr. World
List of Crystallographic Computing Programs and Tech-
nical Report No. 29, Computation and Data Processing
Center and Crystallography Laboratory, University of
Pittsburgh.

A Theory of the Joint Probability Distribution of Complex-Valued Structure Factors

By SHIGEO NAYA AND IsaMU NITTA
Faculty of Science, Kwansei Gakuin University, Uegahara, Nishinomiya, Hyogo-ken, Japan

AND Tsutomu ODA
Osaka University of Liberal Arts and Education, Minamikawahori-cho, Tennoji-ku, Osaka, Japan

(Received 31 August 1964 and in revised form 5 November 1964)

The joint probability distribution of complex-valued structure factors, which may be used for the
statistical determination of the phase angles in non-centrosymmetric crystals, is derived as an exten-
sion of our previous theory for real-valued structure factors (Naya, Nitta & Oda, 1964). The pro-
bability distribution function is given in a form of an orthogonal series based upon the associated
Laguerre polynomials. The application of the theory is also illustrated in some special examples.

Introduction

In a previous paper (Naya, Nitta & Oda, 1964), the
present authors dealt with a theory of the joint prob-
ability distribution of signs of structure factors which
is applicable to centrosymmetric space groups. A theory
of the joint probability distribution of complex-valued
structure factors for non-centrosymmetric crystals may
similarly be formulated and will be useful for statistical
determination of the relevant phase angles. Although
studies along this line have been published by Bertaut

(1956) and Karle & Hauptman (1956), it seems that
much is still left open regarding the complex structure
factors. In this paper, we extend our theory of the
statistical method of the sign determination in real
structure factors to the phase angle determination in
complex structure factors.

In §1 is introduced a concept of the joint probability
distribution of phase angles. In §2 is given a formul-
ation of the joint probability distribution of complex
structure factors, from which the explicit expression
of the joint probability of phase angles can be derived.
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In §3 are shown some examples of calculation on the
basis of our theories in §§ 1 and 2, which may show its
practical usefulness in crystallography.

1. Joint probability distribution of phase angles
In the previous paper on the statistical method of sign
determination (Naya, Nitta & Oda, 1964) for centro-
symmetric crystals, the concept of the joint probability
distribution of signs was introduced. The same con-
cept can be easily extended to the phase angles of
complex structure factors as described below.

11 A general expression of the joint probability distri-
bution of phase angles

Let m normalized complex-valued structure factors
be denoted by Ei,. .., En, their amplitudes by Ej,. ..,
E.; and the corresponding phase angles by ¢y,. .., ¢m.

Ei=E exp(ig1),..., En=Emexp (ipm) (1)

Values of the amplitudes Ej,. .., Ex are determinable
from measurements. Let P(¢,..., om) for the phase
angles be the joint probability distribution under the
condition that the magnitudes of Ey,..., En have al-
ready been known. Since the distribution function
P(py,. .., pm) should naturally have the periodicity of
27 for each ¢;, it may be expanded in a form of multiple
Fourier series as
Z..... z

P(wl, (2 )m n=—o0 np=-=a
x{exp {—i(m@i+ ... +nmem)}) exp {{(mei+ ...

+I’Zm(0m)} , (@)
where the coefficients with angular brackets are the
expected values of exp { —i(n1¢;+ . . . + Am@m)}, name-
ly,

l @ «©

. a(ﬂm)

{exp { —i(mo1+ ... +nmpm)})
2n 2n
= So .. .So exp { —i(m@+ . .. +1mpm)}
X P(g1,. - > pm)doy. . .dom . (3)

Because P(gi,. . ., om) should be invariant with respect
to the simultaneous change in signs of the angular
variables ¢,..., p» (Karle & Hauptman, 1956; Ber-
taut, 1956, ) we have

P(@1s- s 9m)=P(=915- - ., —m) . “)
Since equation (3) with (4) gives
exp { —i(mo:+ . 3 +nmom)})
={exp {{(mo1+ ... +nmpm)})
={cos (mp1+ ... +mmom)), (5)
and
{sin (@1 + . . . + Am@m)y=0, (6)

(2) can be rewritten as

t P(sy,. .., Sm) can be expanded as

1
.y Sm)— —m E Z <Sln1
m=0 "m—o

[See also equation (1) in our paper (Naya, Nitta & Oda, 1964)].

P(sy, .. SmPmYS| 1. . Smtm.
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P Y=ol FE
Groeer fm (27‘[)"‘ m——;o‘ .n'm.-——f’“
x{cos (@1 + . .. +nm@m)) cos (me1+ . . . +nm@m) . (7)

The equation (2) or (7) is a generalized analogue to
the joint probability distribution of signs P(s, . . ., Sm)T,
which was introduced in the previous paper on the
centrosymmetric case.

12 Reduced probabilities of phase angles

The probability distribution for a single structure
invariant which is independent of the choice of permis-
sible origin (cf. for example, Karle & Hauptman, 1956)
is derived from (2) or (7), as follows. Let @, be a struct-
ure invariant, bemg a linear combination of several
components ¢;’s whose indices hs’s satisfy a necessary
condition; for example,

D1=0n,+ O, t+ O, = @1+ P2+ 03, (8)
with
h1 + h2 +h3 =0 .

The probability P(®,)d®, for &, to be between @, and
@, +d®, is given by the reduction (integral) of P(p,

.., Om) concerning ¢i,..., ¥m, assuming that ¢, +
@2+ @3 =, is kept constant.

P(®)= SZ . Sz P01, . s 0om)dor. . . dom
(¢l+(l77+(03 @) =const.)
= 5 Z exp { —iNy(¢1+ 02+ 93)}) exp {iN:i(p;
+02+03)}
_5 {exp (—iN,@D) exp (iN:#y)

With the use of (5), equation (9) is rewritten

P(¢1)= % {1+2 2 <COS N1¢1> COS N1¢1} . (10)
Ni=1
which gives a general form of the probability distri-
bution for a structure invariant.
Similarly, the probability distribution generalized
for k structure invariants @i,..., @ is obtained by

reduction,
2n 2
P(Dy,..., D)= S ....... SOP(¢,,. o om)dor. . .dom
(d>1=conost.,. .., Dg=const.)
1 @
== R exp { —i(N;D1+ ...+ NPy
(27’E)k Ny o Nk=—oo< p{ ( 1%¥1 k )}>
exp {i(N;P1+ ...+ NxPrx)}
L Zoo... Z {cos (N\®;+ ...+ NgPr))
(27)E Ny=—o Ng=—o
cos (N{®@1+ ...+ Ng®r). (1)

It is to be noted that the k invariants are linearly inde-
pendent of each other, namely
N1¢1+N2¢2+ o +N}g¢k$0 N

(except for Ny=N,=...=Ng=0). (12)
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1-3 Conditional probabilities

The knowledge of the value of a structure invariant
&, has an influence upon the probability distribution
of another invariant @,. Let P(®,|®,) be the conditio-
nal probability distribution of &, for a fixed value of
@,. It is shown that

It is to be noted here that although the expected value
{sin N,@,) is zero as shown by (6), the conditional one
{sin N,®,)e, does not always vanish as shown by
(18).

In the same way, the conditional probability distri-
bution of &, under the condition that the values of
two structure invariants @, and &; are fixed is derivable

P(®,, D)= P(D,)P(D,|D)), (13) as follows [equation (19)]:
P(®, D,)
P(D| D)= —" =L
@)= 5
1 © © . .
Yy 2 (exp {—I(N1¢1+N2d52)}>exp {I(N1¢1+N2¢2)}
— (zn) Ni=—wo Ny=-w©
L 2 {exp (—iN,®,)) exp (iN,D,)
27[ Ny==-—
1 @ . .
=2n 2 (exp (—IiN1Py))q, exp (iN191)
T Ny=—cw
1 ® . ,
= —2‘7%‘{1+N1=Z_w<ex9(*1N1¢1)>¢2 exp (iN;91)} (14)
(N1+0)
where the coefficient
N _2 {exp { —i(N1D@1+ N,DP,)}) exp (iN,D,)
(exp (—iN;P) Yoy = ——= w
N _Z (exp (—iN,®,)) exp (iN,P,)
<exp ( —iNl¢l)>+N Z  (exp{—i(N1D+ N,D;)}) exp (iN, D)
_ *re0) (15)

a0
1+ X {exp (—iN,®,)) exp (iN,P;)

represents the conditional expected value. From (14),
P(D,|D,) becomes

P(D1|D,, D3)

1 ©
1 ® = {1+ X <{exp(—iNi®)>as03exp (N1},
P(®®)= — {142 X {cos N;®;>a,cos Ni®; ar U, 2 (P (ZNi®))en.0scxp (NP}
2n Ni=1 (N1 %0)
° (19)
+2 NZ 1 (sin Ni@1)a, sin N1®1},  (16)  where the conditional expected value
-
where the conditional expected values of cos N;®; and {exp (—iN1D1))as,03
sin N;®; are given respectively by is [equation (20)]
{cos NP )+ Z  {{cos (N,@,+ N,P,))+ {cos (N,D, — N,P,)>} cos NP,
<COSN1¢1>¢2= N2=1 - (1‘7)
1+2 X {cos N,®,) cosN,®,
Ny=1
and
e
- 2 {<COS (N1¢1 + dejz)) ‘—'<COS (N1¢1 “‘dejz))} sin Nz¢2
(sin N 1@, )g, = No=1 (18)

e o]
1+2 2 <{cos N,®,) cos N, D,
No=1
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Zz 2 (exp {—i(N1D1+ N, @+ N3D3)}) exp {i(N,D,+ N;P3)}

Ny=—w N3=—o

(exp (—iN,D1))as,03= -
Ny=—00 N3=—0

Similarly to the case of the centrosymmetric crystals
in the previous paper (Naya, Nitta & Oda, 1964),
any conditional probability and expected value can be
successively obtained as the number of known values
of the structure invariants increases.

2. Joint probability distribution of complex-valued
structure factors

Let the explicit form of the joint probability distribu-
tion of a set of m complex structure factors be
P(Ey,..., En, ¢1, ..., ®m). Then, since the joint prob-
ability P(¢y, ..., pm) introduced in 1-1 is taken, by
its definition, as the conditional probability obtained

from P(Ey, ..., Em, ¢1,.. ., om) for a set of fixed values
of Ey,..., En, we have
P(qol:' oy ¢m)EP(¢1,- LR (ﬂmlEl,- ey Em)
_ P(E,...,Em 01, ., Om)
27 2n . 21
SO . .SO PE....Emon. . om)dor. . dom” @D
Hence, if the explicit form for P(Ey,. . ., Em; @15« . ., @m)

is obtained, the equations introduced in §1 which are
useful for phase determination will be explicitly derived.

In this section the explicit form of the joint prob-
ability of the complex structure factors is derived, by
extending the methods used by Klug (1958) and by us
(Naya, Nitta & Oda, 1964) for the real structure factors.
The calculation is carried out based upon a priori
probability of ‘uniform distribution’ for atoms in a
unit cell.

2:1 Moments of complex-valued trigonometric structure
factors

Starting from the complex-valued trigonometric
structure factors as

)=t SE' exp (2iheSy)

=T Z exp (2mi Ryhr) exp (2nihty) , (22)

we 1ntroduce the mixed moments of §(hy),. .., E(hm),
m"" m“(hl, ..,h )

= E(h)e* (hy). . .Em)E* (hm) , (23)}

where Sp is the pth operation of the symmetry with
the rotational part R, and the translational part ty,
s is the order of factor group, 7 the order of translation

+ Karle & Hauptman (1956) used the mixed moments of
another type

mit 2B, ) =7 @) (). P B)CET ()
where # and { express the real and imaginary parts in &=
n+i¢ respectively.

(20)

P E (exp { —I(N2¢2+N3¢3)}> €Xp {I(N2¢2+N3¢3)}

group (t=2 for 4, B, C, I; t=3 for R; 1=4 for F),
E*(h) means the complex conjugate of §(h), and «,
o*,..., w, w* are non-negative integers. The average
in (23) means the integration with respect to r over
the unit cell. The integration can be easily carried out
(refer to Appendix I of Naya, Nitta & Oda, 1964), and
this results in
a* w*(hla vy hm)=
1:‘“+°“)+ SECRL D) 2.z z

Zap=a Zap*=a* Zop=0 Zwp*=w"*
b p p 14

» alo*!, . wlw*!
* *
H(aploy!. . .owplwyh)
p

s—1
x exp [2mi{ ):0 [(op—op)hy + . . . +(wp—w))hnlty}]
=

s—1
X 6 [20 Rp{(ap —a;)hl + ... +(a)p—w;)hm}] N
e
where the ranges of the integers oy, «},. .., wp, w, are
O<op<a,..., 0<w, <w*, respectively; the summation
is to be carried out over all possible combinations of
s—1 s—1
Up,. .., w, satisfying 2 ap=0a,..., 2 w,=w*.
=0 p=0
The Kronecker symbol J means

o [Z Rp{(ap—o)hy+ ...
p=0

(24

+(wp _w;)hm}] =1,

s—1
if 20 Rp{(ap—ahy+ ... +(wp—w)hm} =0,
P

s—1
0 [):0 Rp{(ap—op)hi+ ... +(wp—wphn}]=0,
e

+(wp—whm} £0.  (25)

For the space group P1, (24) takes a simple form
moz‘ w‘(hl, R hm)=5{(oz—a*)h1+ e +(CO —C()*)hm}.
(26)

s—1
if 20 Rp{(ap —-oc;)hl + ..
p=

22 Moment-cumulant transformation
The cumulants with respect to the moments of (23)
can be obtained by an extension of the one-dimensional
moment-cumulant transformation
@ un
,,fokn n! —log {

o

2 mn
n=0
where u is a real carrying variable and k, the cumulant.
In the case of many-dimensional transformation with
complex carrying variables u;’st, we have

u’n
lom=0, @)

* *
wat,. wor=0 ¢ ala*l . Lolw*!
@ g » Wy 0*
uju; ... uxu
e B ) o
a0, .. ,0,0%=0 Ot!ot !. . .U)!CO*!

+ The complex carrying variable can be expressed by u=
v+iw=ueif . u* is the complex conjugate of u.
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where k*;@* represent the cumulants.
Comparison of the expansion series in both sides of
equation (28) gives the following relations:

ka0t =meto®, for (a+a*)+ ... +(w+w*)

...

=1,2and 3, (29)
k&t =m”
-3 2 A
(«’+o* )+ ...+ +o*)=2 (@ +a*)+ .. .+ (" +o*")=2
e (212
X mg B me a
ola*!. . olw*!
% (a'lo®'!. o' l* D la* L " ™Y
x 8{a— (o’ +a”)}o{o* —(a* +a*")}. . . H{w
—(0' + ")} {o* —(0* +0*")}, (30)
for (@x+a®*)+...+(@+w*)=4,
kSt =me s
-10 x x
()@ o) =2 @ et )t e e )=3
2131
e
xm G me i S
ala®!. . wlo*!
* (a1, . . l* D) lo* " w* )

x {o— (o' + oY }o{o* —(@* +a*"")}. . . o{w—(0' + @)}
x 0{w* —(w* +w*")}, (1)
for (a+a*)+...+Hw+w*)=5,
and so on.

2-3 Moment-generating function

The moment-generating function corresponding to
the moments defined by (23) can easily be prepared as
follows (see Appendix I):

M(uy,. . ., um) 5
=exp {04+ +up)}exp [ 2 —S’i L, (32
where £ is
B Z‘ 1 o+ o* 1 o+ow*
" (m+a*)+...+(w+a)*)=n<l/‘a> o (V@)
ket up ) ( g ) (u;,)“ (“_"‘) “
X e ol (2 2] o \2 2/,
(33)
and
N s
Zo= Zwp, wim—L—. (9
= & 3
j=1

In these equations, S=st is the symmetry number, f;
the atomic scattering factor and yj; is its normalized
one, and N is the number of the atoms in the unit cell.
&L,. .., ém are the statistical weights for special type
reflexions (Bertaut, 1960). Expansion of the right hand
side of (32) gives

COMPLEX-VALUED STRUCTURE FACTORS

My, . ., um)=exp {23+ ... +12)} [1+ %23
2
+{é 4 2 2%}

S 47 282
zZ
boo]

Z, Z3
34-4 3
s 2,8+ 655 2
It is to be noted that the form of the series (35) is the
same as the one in the case of centrosymmetric crystals
[1964, equation (39)], although the implication of £,’s
is modified corresponding to complex-valued quanti-
ties.

2

Z
+ {TS L+ (35)

2+4 Fundamental inversion transformation

The inversion transformation of the moment-gener-
ating function (35) gives the joint probability distri-
bution of complex structure factors

1 o] o) . .
.P(El,..., Em)= _(Tn)—ZES_ ...S_ wt(lul,...,lum)
xexp[ —i{(%EI+%El) +...

Um
+ (T

(see Appendix I).

EX+ “2—'"5,,,) H du...dum (36

Substituting equation (35) in (36), and taking account
of relation (33), it is found that the integration in (36)
can be expressed by a series of inversion terms as fol-
lows:

® *
I=Inversion of { exp (3u?) (UT) ' (%) ' }

SojweXp (—-‘Ji»uz)<i_;”‘_)n (%) -

{ .uE*+u*E}
xXexpy —I du,

g

(37

where » and »* are non-negative integers.
By the relations E= Ee® and u=uet, it holds that

JuE*+uw*E)=uFE cos (p —6),
and
du=dvdw =udud? .
Then

1 in+n* w p2n L
= oy 7 So So exp (—3)

x exp { —iuE cos (p—0)}un+n*+1lexp {i(n* —n)0}dudo.
(38)
With use of the relations

e—tuEcos(p—6) — (— pym .OZO' Jm(uE)e-im@ -6 39
m=—coc

and

27
SO

(38) becomes

e—im(¢ —G)ei(n*—n)odg.z 2ne—im¢§m,n_n"

(40)
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I =— e—i(n—n*)w
4

(— 1)71* @© 2 J E n-l-n*+1d 41
X [WT{ SO CXP("%u) n—n.(u )Ll I ], ( )

where Jm(uE) are the Bessel functions of degree m.
The relation (41) is further integrable with respect to u
[see Appendix II and Erdélyi (1953)], and its final
result is

I = % e~ Ky nlE) , (42)t
where
K. ns(E)= Ry, ns( E)e~t (01400 (43)
and
Rune(E)=(—=)P*n* | Er-n*LG&=1(E2) . (44)

In (44), L®(x) is the associated Laguerre polynomial
which is defined by
erx# d¥ |
L(vﬂ)(x) = Vvl—f zxj {e Tx +ﬂ} .
The function K ..(E) satisfies the orthogonal relation
with respect to the weight function 1/mexp (—£7?)
proper to the complex structure factors; namely,

(45)

©0na2n
S S %exp(—EZ)K,’,",,,.(E)K,,,,W(E)EdEd(o
0 J0

=n!n*!5nm§n.m. P’y (46)

(see also Appendix III).

Thus, when the probability distribution of a single
structure factor is taken as a simple example, it is
easily shown by the use of the orthogonal relation (46)
that the probability P(E) can be expressed as

1 © o (g* (E
)= Lo 5 5 Karll k,e), @
L. = z

Z{lep’ +ap*)+ ... F(wp +wp*)}=a

V 7 PACTIE SN +ap” ) (ap* + ... +ap*”*’)
€1
X
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where
w pln
o

K E)=\"\ " KiE)PE)EdEDD.  (48)
¢
From the nature of the Laguerre polynomials, it
is also shown that the polynomials Ry, z.(E) possess
a symmetric character in n and n* as follows,
Rn,n‘(E)=Rng,n(E) .

Ru,n(E) can be expressed by the expansion series

n*

RualE)= Z (=1)mmlG)(r)En+n#=2m, (n2n*) , (50)
m=0

(49)

(see Appendix IV).

The particular forms of Ry, n«(E) with their numer-
ical examples are given in Appendix V.

2-5 General expression for the joint probability distri-
bution of complex-valued structure factors

By substituting the relations (24), (29), (30), (31), (33)
and (35) into the inversion formula (36) and by taking
account of (42), the joint probability distribution funct-
ion of complex structure factors can be derived as fol-
lows:

P(Eh' B Em)
1
= CXP {—(E?+...+E2)}

Zs Z

72
<1+ G E S i g 5
Z ZZ
+ ?5 {Zs—Zn}+ 3‘24 {243 =320}
ZS
+FS3TZ3”+”' ] (51)

where

)

Z(ep™ +ap* )+ H(@p” Fop* )y =f
( _T >Z(m,,'+ ot op” ) Hwp*' . op*™)

Em

(ot . awplay ).
v

4

T o
o oy My

s—1
x exp [2ni ):o [, —a)+ ...+ (0 =0 M+ . .. +{(, ~)+ ... (" —w, ) hm]ty]
p=

X KZ'(ap'+ ceetap” ), Zap* ... +ap""")(E1) s KZ(cop'+ ceet@p ), Z(wp* + ...+ wp""’)(Em)

s—1 s—1
xo £ Ry{(oy =0+ . ..+ (@, —hm}]. . O] 2 Rp{(e) —o Wy + . . . +(w) —wy Mm}] . (52)
p= p=

+ Equations (37) and (42) are to be compared with the
inversion transformation formula given by Klug [1958, equ-
ation (1-16)] for the case of centrosymmetry as follows

I=1nversion of {exp (Fu2)un}
1 oo
= —~/ exp (—4u2) (iw)* exp (—iuE) du
27 | —»

=(1V/27) exp (—+E2) Ho(E),

where Hn(E) is the Hermite polynomial of degree .

1 This formula corresponds to the following one as given
for the case of centrosymmetry

[ o]

P(E)= exp (—3E?2) X

n=0

<Hn('E)> HAE),
n.

1
V2n
where

(HAE)=\ HWE)P(ENE.
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It is again noted that the series on the right hand side
of equation (51) has the same form as given by us (1964)
for the case of centrosymmetric crystals except for a
difference in the definition of 2, ,. The higher order
terms such as O(N —%2) and O(N ~2) are omitted in (51),
since they can be looked for in our previous paper.
Kun,2E)t in (52) are the orthogonal functions given
by (43) and (44); the other notations in (51) and (52)
have the same meaning as in the preceding §§2-1 and 2-3.

Equation (51), with (52), is a general expression for
the joint probability distribution of complex structure
factors with the form of a series based on orthogonal
polynomials, and is applicable to any non-centro-
symmetric space group.

3. Some examples of calculations of joint probabilities

In this section are shown some examples of calculations
of the joint probabilities for the space group P1. First
let us start from a particular example of calculation of
the quantities 2, , in the joint probability distribut-
ion (51).

3:1 Examples of deriving Xy,

It has been shown in the earlier paper (Naya, Nitta
& Oda, 1964) that X, ’s are successively constructed
from those of lower degree to higher ones in the case
of centrosymmetry. The same holds also in the present
case of non-centrosymmetric groups. Thus, let us put
forward an example of calculation of Z,, , for three
structure factors E; = Ey,, E; = Ep,, E3=Ey, with indices
which are related to each other by h;+h;+h;=0.

In this example, relation (52) gives 2, in the form

1
Sa= z S —
"7 ety iyea CF BEFTIA

X K, (EN)Kp s ED)K, ,«(E3)o{(o —a*)hy + (B — )y

+(—y9hs}. (53)
The non-vanishing condition of d{. ..} is written
(@—o*hi + (BB +(y—yHhs=0,  (54)
" a—o*=f—fr=y—y*. (55
There is another condition for the summation
atoa*+p+pE+y+yt=a. (56)

The particular partitions of the non-negative values of
a, a*, B, B*, y, y* are allowed by (55) and (56), as shown
in Table 1.

+ Though Kn,»* (E) can be also rewritten

Kn,n* (E)=Kn* n*(E)=(—1)"n!L,™* ~W(E2)E™ —"
=(=1)n* n*] Lye (=n*) (E)E*n-0*

the form (43) with (44) will be more convenient.

Table 1. Possible partitions of o, a*, B, f*, vy and y*
satisfying equations (55) and (56)
The last column gives the values of 1/(a!a*! B! g*tyl p*!).

a o of fp*y ¥t a o o* B BF oy ¥
211000 01 6 3 3000 0
0011001 0 03300 g
0000111 0000 3 3 &
221100 %
310101 01 002211 3
0101011 110022 %
2200 11 %
4 22000 0 % 112200 %
002200 % 00112 2 %
00002 2 % 2 020 2 0 %
1111001 02020 2 %
0011111 111111 1
1100111
732101 0 4%
5211010 3% 103210 &
102110 % 1 0103 2 %
1 01021 1 230101 3%
120101 % 012301 3%
011201 1% 0101 2 3 3,
01011 21 212110 %
1 021 21 3
211021 %
1 21201 %
011212 %
120112 1

From (53) with Table 1, we have
2= Kio(E1) K1o(E2)K10(E3) + Kor(E1) Koy (E2) Koy (E3)
=2Ro(E) R1o(E2) R1o(E3) cos (91 + 02+ ¢3)

=2E\EE; cos (p1+ ¢+ ¢3) , (57)
2y =3 Ky(Ey)+cyc. ]+ [Ki(E)Kyy(Ez) +cyc.]
=3[Ro(Er) +cyc. ]+ [Ru(E) Rn(E) +cye.] , (58)

Zs=3Kn(E)K1o(E2)K1o(E3) +cyc.]

+ K 12(E1) Kor(E) Koy (E5) +cyc.]

=[Ro1(E1) Rio(E2) R1o(E3) +cyc.] cos (91 + 92+ 93),(59)
and so on. Knn(E) and Rpn«(E) stand for Kp n«(E)
and Ry, x.(E) respectively for the sake of simplicity.

Zas(hy, hy, h3) or, more generally, 2, ,(h;, hy, hs)
can be constructed from those obtained as above,

if the following relationships are used. The definition
(52) gives Zgp the form

Zab= Z Z
ata*+f+f*+ytyt=a o' +e¥' +B+B* +y +y* =b

1
x ala*IBIB* Iply*la lo* 187 1% 1y 1y*)
X Koy ot o lE I)Kﬂ +4%.8%+ ﬁ*'(Ez)Ker ¥ e+ y"(E3)
x 0{(a —a*)hy + (B =¥+ (y —y*)hs}
x 0{(a" —o* Yy + (B —* My + (¥ —y*)hs} .

The product of X, and Xy gives

(60)
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Zalp= z X

ata*+f+pHytyr=a o e+ VY Y =b
1
Al * BBy e o U B 1y Ty
X K, w(ED Ky oA ED K po(Es)
x Ky psA E2)K,, ,(E3)K, o (E3)
x 8{(a —a*)hy + (B —*)hy + (y —y*)hs}

x O{(o' —a* My + (B —f* )+ (v —y*Dhs} . (61)

Comparison of (60) with (61) reveals that (60) is ob-
tainable from (61) only by replacing K, ,«(E))K,: +(E})
of (61) with K, . .e1.(E1), etc. Thus, if we define a

formal product

Ka,a‘(El) * Ka’,a*'(El)EK&+«'.&‘+&"(E1) ’ (62)

we can obtain Xgp by

Zap=Za* Ly . (63)

For example, 253 is given by
2y =25 % Ly={Kio(E)K10o(E2) Kio(E3)
+ Ko1(E\) Koy (E2) Koy (E3) } * {Kio(E1) Kio(E2) Kio(E3)
+ Koi(E) Koy (E») Koy (Es)}
= Kyo(E1) Kyo( E2) Koo(E3) + Koo E1) Koo E2) Koo(E3)
+ 2K (E)) K (E) K (Es)
=2Ryo(E1) Roo(E2) Ryo( E3) €08 {2(p1 + 92+ ¢3)}

+ 2R (E)Ri(E;)Ryi(E3) , (64)

and

Z=24 % X3={3[Kn(E)) +cyc]+[Ku(E)Ki(Ey)
+cyc.]} * {Kio(E)Kio(E2)K1o(E3)
+ Koi(E) Koy (E2) Koy (E3)}
=H[Kn(E)K1o(E2)K1o( E3) +cyc.]
+[K23(E1) Kor(E2) Koy(E3) +cyc.]}
+ [Ku(E) Ko (E2) Ko E3) +cyc.]
+ K2 E)K12(E2) Koy (E3) +cye.]
=3[R3(EDR1o(E2) Rio(E3) +cyc.] cos (g1 +p2+¢3)
+ 2[Roi(ED) Ror(E2) Ryo(E3) +cyc.] cos (p1+ 92+ ¢3)

(65)

etc. In general, it can be proved that

Zap.f=Za*Zpx ... % 2. (66)

Therefore, when the necessary Xgp...s’s for the ex-
pansion terms up to O(N—*2) in (51) are to be derived,
it is sufficient that the partitions of «, a*, f, f*, y, y*
are sought for X,, X3, Xy, X5, X5, 27 and then Zgp...f's
are step by step constructed therefrom by the use of
(66). This procedure is useful in the calculation up to
the higher orders for any other combinations of struct-
ure factors Ey,. .., Em. [Refer to equation (40) in our

paper (Naya, Nitta & Oda, 1964)].
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3:2 Joint probability distribution of the complex-valued
structure factors Ey=Ey,, Ey=Ey,, Es=Ey, under h;+
hz + h 3= 0.

Introducing Zg4p...5 of §3-1 into the general expres-
sion of joint probability distribution (51), the joint
probability distribution of E}, E,, E; is given as

1
P(El, EZ’ E3)= ? exp { _(E%+E%+E§)}
x [1 +2Z3R1o(E1) Rio(E2) R1o(E3) cos (@14 92+ ¢3)

— 24 [Ru(E)+eye]+ Z3RanlEn) Roo ) Roo E)

x 08 {2(p; + 92+ ¢3) } + Rii(E1) Ri(E2) Ryy (E3)]
—Zs[Ro1(EV)Rio(E2) Ryo( E3) +-cyc.] cos (91 + 92+ ¢3)

yAY A
- 32 2 [R32(ED)Ryo(EZ)Ryo(E3) +cyc.]

x €08 (@1+ @2+ ¢3) + Z3[$ Ryo(E1) Rso( E2) Ryo( E3)

x €08 {3(¢1 + @2+ 93)} + Ra1(E1) Ro1(E2) Rai(E3)

x €08 (91 + @2+ 03)] + Ze{$[ R33(E1) +cyc.]

— Ryy(E1) Ryy(E2) Ri1(E3) — 3 Rao(Er) Rao( E2) Ryo( E5)

x cos{2(p1 + 92+ 93) }} — Z5 Zs{[ R31(E1) Roo( E2) Rao( E3)

+cyc.] cos {2(p1 + @2+ 93)} + [Ro2( E) Ria(E2) Ruy(E3)

+cye ]} + Z3{ &I Ru(E) +cyel]

+ 26 Roa( E) Rap(Ey) +cye ]}

73z,
4

x cos {2(p1+ @2+ ¢3)}

+[R33(E1) Ruy(E>) Ru(Es) +cye.}

+ ZH{15Rao(E1) Rao(E2) Rao( E3) cos {4(p1+ 92+ 93)}

+ 1 R3(E)R31(Ex)R3(E5) cos {2(py + 92+ 93)}

+%Rp(E1) Roo( Ey) Ryo(Es) }

+ Z7{3[Rs2(E1) Ryo(E2) R1o(E3) + cyc.] cos (g1 + 92+ ¢3)

+3[Ro1(E1) Ryy(E2) Rio( Es) +cye.] cos (¢1+ 92+ ¢3)}

+ Z3Zs{Z[ Ru3(E1) Rio(E2) Rio( E3) +cyce.]

x €08 (@1 + @2+ ¢3) = Rar(E1) Ru(E,) Rai (E3)

x €08 (91 + 92+ ¢3) —FR30(E1) R3o(E2) Ryo( E3)

x cos {3(¢1+ @2+ @3)}}

+ Z4Zs{4 [ Ri3(E1) Rio(E2) Rio( E3) +cye ]

x €08 (@1 + @2+ @3) + 2[ Ry2(E1) Ray(E2) Rio( E3)

+perm.] cos (91 + 92+ ¢3)}

— Z3Z {3[Ru1(E1) Rao( E2) Ryo(E3) +cyc.] cos {3(g

+ 02+ 93)} + [ Rao( E1) Rot(E2) Ror(E5) +cye.]

x €08 (91 + @2+ ¢3)} + Z3Z 3{F6[ Rsa(E1) Rio(E2) Rio(E3)

+cyc.] cos (¢1+ 2+ 93) + 3 R32(E) R32( E2) Ruo E3)

{[Ra2(E1) Rao(E) Rao( E5) +-cyc.]
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+cyc.] cos (1 + @2+ 93)}

—Z3Z {2 Rsz2(E1) Ryo(E2) Rao E3) +cye]

x €08 {3(p1+ @2+ 03)} + 4 Ras(E1) Ru(E2) Rar(E3)
+cyc.] cos (p1+@2+93)}

+ Z3{25 Rso(E1) Rso(E2) Rso(E3) €08 {S(p1+ 92+ ¢3)}
+ 25 R4 (E1) Rys(Ez) Rar(E3) cos {3(p1 + @2+ 93)}

+ L Ry;(E1) Rsz(E2) Raz(E3) cos (¢ + @2+ 93)}

(67)

This result is to be compared with equation (III-2)
in the previous paper (Naya, Nitta & Oda, 1964),
which dealt with an example on PT with three real
structure factors E;=FEsy, E,=E,s,, E;=FE;s; under
the condition h;+h,+h;=0. Both results are in a
complete correspondence to each other.

Bertaut (1956) and Karle & Hauptman (1956) car-
ried out also the calculation of the joint probability
distribution of the complex structure factors on the
same example as the present one. However, their re-
sults were only to the approximation O(N %), namely
up to the second term in (67).

3-3 Probability distribution of magnitude of a single
complex structure factor: P(E)

In this section, it is shown that the probability distri-
bution of magnitude of a single complex structure
factor, or Wilson’s probability distribution, can be
treated as a simple case of the general relation (51). If
an expansion series up to O(N~2) is considered, the
probability distribution of a complex structure factor
P(E) has the form

P(E) =+ exp (— B3| 14+ Zi{ Zi—42}

22 +Z{Zs— 2ot 320}

+ '74 {Zu—Zan+iZom}+

in which Zgp...s’s with the subscripts of odd values are

not included. It is easily shown that there are relations
Za—3Zn=—4Rn(E), Zs—Zan+3Zym=3Ru(E),

Zu—2m+ .liz 2222 =11?R44(E ) . (69)

Substituting (69) in (68) and integrating (68) multiplied
by E with regard to ¢, the probability distribution of
the magnitude of a single complex structure factor is
given as

P(E)ES(Z)“P(E)Ed(o=2E exp (—E?)

2
< [1= 22 RalB) + 52 Ra(E) + 3 RE)+ -1
(70)

This result is the explicit form of the formal expression
2
P(E)= S P(E)Edy
0

=2Eexp(—FE2 X {Rnn(E))
n=0 (n!)2

which can be derived by the integration of (47) with
regard to ¢. Here it may be noted that the expression
shown by Bertaut [1956, equation (28)] is nothing but
the non-vanishing first two terms of (71).

Now let us calculate the expected value for |[E|{P=E?
by the use of (70). Using a relation

Ra,a(E), (71)

@
S 2EPH exp (= E2) R, o(E)dE
(V]

=1 (232)2m(p -2 -4, [p-Ca-2] ()

(Appendix VI), we obtain

(EP>=S:E1’P(E)dE=F (#) [ 1- —IZ—gp@—z)

+ %p(p -2)(p—4)

% 2 4 6 73
+ok Mp=2p=ap=6+... | . (73

In a particular case of equal atoms, for which Z,= N1,
Zﬁ = Zi = N—Z,

<E?’>=F(p—;—2) [1 - Téwp(pﬂ)

—2)(p—4)(9p+10)+...]. (74)

1
* Z0gnz PP
The formula (74) agrees with that calculated by Karle
& Hauptman (1958) from their new joint probability
distribution method.

3-4 Joint probability distribution of two structure in-
variants: P(®y, ®,)

Consider five complex structure factors E;, E,, Ej,
E,, Es related by h;+h,+h;=0 and h;+h;+hs=0.
Then,

P =0n T Pn T =1 2103
and

¢25¢h1+¢h4+¢h55‘/’1+¢4+(ﬂ5 (75)

are the two structure invariants. As was suggested by
Karle & Hauptman (1956), these two structure invari-
ants possess a sort of interaction not only between
their magnitude but also between their signs.

To study more explicitly the nature of the interaction,
calculation of the joint probability of these two struct-
ure invariants is carried out as follows. P(E,, E,, E;, E,,
Es)is set up by using the fundamental equation (51),
and then, following the relation (21), the joint probab-
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ilities of phase angles given in §1 are obtained. The
calculation up to O(N—32) shows that the joint prob-
ability distribution for the two phases @;, @, corres-
ponding to (11) is given by

1
P(D,, D)= g [142{cos @,) cos P;+2{cos P,)

x cos @, +2{cos 2, cos 2®, +2{cos 2P, )cos 2P,
+2{cos(D; + D,)) cos (P, + P,) +2{cos (D, — P,))

x cos (@ — D,)+2{cos 3, cos 3P, +2{cos 3P,)

x c0s 3@, +2{cos 2P+ @,)) cos (2P, + D7)
+2{cos (D, +2®,)) cos (P, +2P,) +2{cos 2P,
—@,)> cos 2D, — D,) + 2{cos (P, —2P,)) cos (P,
(76)
where the expected values are given by

{cos @)= Z3R,o(E) Rio(Er) Rio(E3)

- % [Ro(ED)R1o(E2) Rio(E5) +cyc.]

2,2,
4

Z:Z,
+ =

[R32(EV) Rio( E2) Ryo( E3) +cye.]

Ryo(E) Rio(E2)(R10)(E3)[Ra2(Ey) +cye.]

Z3
+ 5 Ro1(E1) Ryi(E2) Ry (Es)
—Z3Rio(E1) Rio(E2) Ryo(E3) Ry (Er) Ry (E2) Ru(Es)
—ZsR1o(E))Ryo( E2) Ryio( E3)[R11(Eg) + Ryy(E5)]
+ Z3Z4 R1o(E1) Rio(E2) Rio( E3) Ryy(Eg) Ryy(Es)
+ Z3Ro1(E1) Rio(E2) Rio( E3) Riy(Es) Ri(E5)
— Z3R1o(E) Rio(E2) Rio( E3) Riy(EV) Ryy(Eg) Rya(Es), (77)

and

{cos Pyy=3%, (78)

(The symbol X% means that the set E;, E,, E; and the set
E,, E,, E; in the former equation are interchanged with
each other).

<COS 2¢1> = ZTg Rzo(El)Rzo(Ez)Rzo(Es) ’ (79)

{cos 2P,)=%,

{cos (P, + D,))
=Z3Ry0(E1)R1o(E2) R1o(E3) Rio( E) Rio(E5) ,  (81)
{cos (D1 — D;)) =Z4R1o(E2) Rio(E3) Rio(Es) R1o(E5)
+ Z2R11(E)Rio(E2) Rio(Es) Rio(Es) Rio(Es) , (82)

(80)

{cos 30, )= ZT% Ry(EDRy(E)Ryo(E5) ,  (83)
{cos 3P, y=X¢, (84)
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{cos 2D+ D,))
3
= 23 Ro(ED Rl ED R EDR(EDR S, (85)
{cos (D1 +2Dy))=%, (86)
<COS (2@1 —¢2)>
= ZSZ4R10(E1)RZO(EZ)RZO(EJ)RIO(E4)R10(E5)
3
+ 2 Ru(B) R B R EORW(EDR (D), (87)
<COS (¢1 —2¢2)>= %, (88)

In the case of equal atoms for which Z2=27,=N"1,
it proves that relations (81) and (85) become equal to
(82) and (87), respectively. However, these equalities
do not hold for non-equal atoms. Thus, the calculation
of (76) in the approximation to O(N—32) shows, with
(16), (17) and (18), that the correlation between the
invariants @; and @, appears only in their magnitudes
in the case of the equal atoms, while the correlation is
quite appreciable not only in their magnitudes but
also in their signs in the case of non-equal atoms.

Conclusion

We have presented a systematic theory to derive prob-
ability formulae which may be used for determination
of the phase angles in non-centrosymmetric structure
factors; that is, from the joint probability distribution
P(gy,. .., pm) for a set of the related phase angles, we
derive the corresponding expected values via reduced
probabilities, and, finally, the various conditional prob-
abilities for structure invariants. The functional form
of P(gy,. .., pm) in equation (2) or (7) has an orthogo-
nal expansion form, corresponding to the similar form
of the sign joint probability distribution P(si,. .., Sm)
given in our previous paper for the centrosymmetric
case. The results obtained seem to be of significance in
the practical procedure for determining angles of struct-
ure invariants and their individual phase angles.

By making use of general space-group-symmetry
operators, our calculation of the joint probability di-
stribution of noncentrosymmetric structure factors
P(E,,..., Exy) has been carried out in a more general
form than in other works. As results, we obtained the
general expressions (51) and (52) for the joint prob-
ability distribution of complex structure factors. This
probability distribution can, in principle, be applied to
the case with a greater number of structure factors in
any non-centrosymmetric space group.

These equations have the form of an expansion series
of the orthogonal terms with the weighting function
(1/am) exp {—(E?+...+E?)}. This expansion has
not been found in the results given by Bertaut (1956)
and Karle & Hauptman (1956). The Laguerre poly-
nomials found in this paper correspond to the Hermite
type ones found by Bertaut (1955) in the case of
centrosymmetry.
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APPENDIX I
Moment generating function

The method of the moment generating function was
used by Klug (1958) for deriving the joint probability
distribution of the real structure factors of centro-
symmetric crystals. In this Appendix it is shown how
to extend the method to the case of complex-valued
structure factors.

We write the trigonometric structure factor &; and
the normalized structure factor E, in the following

forms,
Ei)=n;h)+if;th), En=Rn+ilh.  (I-1)
These functions are related by
t
Ey= 21 ys&ih) , (I-2)
j=

where y; is the normalized atomic structure factor of
the jth atom, t(=N/S) the total number of atoms in
the asymmetric unit. (I-2) with (I-1) gives

t t
Ri= Z yim®), h= Z w0, (3
Jj= J=

Let M(vy, - . ., Um, Wy,. . ., Wm) be the moment gener-
ating function. By the use of the mathematical expect-
ation operator € (Klug, 1958) and taking into account
of relation (I-3), this function is expressed as

ED’t(vb' DR > Wm)Egﬁ(“b- R um)
=€ exp [v1Rn, +V2Rn,+ - . . +VmRuy,
. +Wm1hm]

t t
=€ exp [{n, z v} +{v2 Z yimi(ho)}
Jj= Jj=

Um, W15+ - -

X exp [wilh, + walp, +

+ -~‘f"{”mj§I wini(hm)}]
xexp [{m £ pilob}+ (v Z pidiho)

+.. .+{ij3_51 v i)}

=€ exp [y 1 {vim(by) +wila(h) } + w1 {vami(hy)
+walith)} + . . . + Y1 {vmni(m) + wnli(hm)}]
x € exp [wa{vima(hy) + wila(hy)} + wa{vara(hy)
+wlo(ho)} + . . . + Yo {vmia(bm) + wimla(bhm)}]
x
x € exp [y:{vune(hy) + wili(B)} + we{vanhy)
+wle)} + . . . + W i{vmhi(bm) + winlethm)}] .
Noting that

(1-4)

u=v+iw, E=n+il,

m+wl=3W*E+uk*).

we have

Then

. um) = € exp s {0+ 2 g o)

bt g + g |

x € exp [Wz {u_}‘ Ea(hy) + i & (hl)}

oty [ ) + U et}

X
uf Uy oy 1
x € exp [t//z {— Eu(h) + —- &; (hl)I

L R I

Comparison of this expression with Klug’s formula
[1958, equation (2-2)] indicates that our moment gener-
ating function is also similar to Klug’s (C-6); namely,

My, . . ., up) = exp[ E’ Zn ﬁn]. (1-6)
n=2 S

L, is given, in the present case, by

1 & +
Lu= 2 -
" u+a‘)+...+((u+m')="(I/Tgl)
1 \etor kot U\
Xown X (VE) % ala*!. . wlw*! (7)
u; a* ll:, @ [} P73 ot
x ( 2 ) ' (7) (T) ’
in accordance with the moments defined by (23). The

. 1 o+ ¥ 1 w+o*
coefficients (—_) , , | — in (I-7)
Ve, Vtem

have been so introduced that the normalization con-
dition {|E|2)=1 can be kept in cases of 7, e#1 (cf.
Bertaut, 1960). In the particular case that the degree

-7

n=(+a*)+ ... +(w+w*) is equal to 2, the relations
(24) and (29) give
kig:§=12se, , K3ob =12, . .,
kg 3i=1%sem, (1-8)
and for all the other cumulants of the degree 2
kS =0. 1-9)

From (34), (I-7), (I-8) and (I-9), the first term in (I-6)
corresponding to n=2 is given by

Z
exp [?2 532] =exp [Jufu+ . .. +furug]
ctu2)}.

=exp (30 +

(1-10)
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This relation and (I-6) lead to the formula (32).

Inversion transformation of the moment generating
function (I-6) is also easily obtained by an extension
of Klug’s method, as follows

P(El,...,Em)EP(Rl,...,Rm, 11,...,Im)
1 ® ® . L ,
=WS_OO... S_wim(zvl, ey Wy W, o, EW)

xexp [—i{(tiRi+wi))+ ... +OnRmn+wnln)}]
Xdvi...domdwy. . .dwp

L Sww... Sw My, ..., uy)

T @ ) —o
/u uf
xexp[——z{(TlEl* + 7‘ El)

Um . Uy
T (T E,,,+—2—Em) ]dul...dum. I-11)

APPENDIX IT

The Weber-Sonine integral formula is given by

a \’ v+u
° (2p) r( 2 )
—p2t2 pu—1 —
| aer e i = 222l S
vty ._?
B (v - ), (I-1)

[iR(v+,u) > 0, |argp| < %, a>0] .

When p=1, v=n—n* u=n+n*+2, a=E and t=u
are introduced in (II-1), we obtain

(=D ¢ .
——S exp (—1 12) Jnn* (Et) un+n*+1 dy
0

2n+n*+1
. I'(nt+l) .
= —_ nr .~ n—n
(=D F(n—n*+1)E
xFy(n+1;n—n*+1; —E?, (1I-2)
where the Kummer function
.o 2 T(a+m) I'(b) xm
i@ b ) = X =T Tormy m WD)
has the following property:
1Fi(a; b; x)=e*Fi(b~a; b; —Xx) . (11-4)

If we substitute a=n+1, b=n—n*+1and x=—E?in
(11-4), the following relation is obtained
Filn+1; n—n*+41;—E?)
=exp (—E2)Fy(—n*;n—n*+1; E?). (II-5)

The Kummer function ;F; and the Laguerre polyno-
mial L%¥(x) are related by
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I'(v+u+1)
T+ I+l
If we substitute v=n*, y=n—n*, x=E?in this relation,
then the following relation holds:

1Fi(=n*; n—n*+1; E?)

_T(n—n*+1) I'(n*+1)
I'(n+1)

Substitution of these relations (I1I-2), (II-5) and (II-7)
into (41) leads to the expressions (42), (43) and (44).

LE(x) = WFi(=v;p+15x) . (I1-6)F

L™ (E?),  (II-7)

APPENDIX III
Let us prove the orthogonality relation

© p2n
%S S exp (— E?) K*,u(E) Km,mo(E) E dE dyp
0 JO
(ITI-1)

found among the functions Ky, .(E). If we substitute
Ky, n(E)= Ry nE) exp { —i(n—n*)p} in the integrand
of the left hand side of (III-1), then the following re-
lation is obtained;

= n! n*! 6nm (Sncmt N

g”exp (—E?) Ry,ne(E) Rin,mdE) EAE

Jo

X %Shexp {i mn—n*) ¢} exp { —i (m—m*) 9} dp
0

- So exp (—E2) Ru,ne(E) Ron ms(E)2E dE-Snnu.m—ms .

(111-2)
When n—n* is not equal to m—m*, (III-2) becomes
zero. If n—n* is equal to m—m*, (I11-2) is written as

{5 (~E?) Ro,ne(E) R, E) 2 E dE
0

[ee]
= (= 1)+t *) k] SO exp (— E2) E2 [W(E?) LY(E?)

x 2EdE, (II1-3)
where
p=n—n*=m—m*.
With the orthogonality relations for the Laguerre poly-
nomials
(v+m)!

[eo]
S ek L) L) dx = 3, E2,
0 .

(111-4)
(III-3) is expressed as
S exp (—E?) Ru,ne(E) Rm,mE)2EdE
0

. n* + p)!
= (— l)n +m* n*! m*! 5n‘ma L'n—*;u-)‘— = n! n*! (Sncmn .
(I11-5)
t It is of interest that the Kummer function is related to
the Hermite polynomials as
Hpy(x) = (=2)vv! Ly ¢“H(x2) = (= 1) 2v~ DI 1 Fi(—v; 35x2),
Hayp1(x) = (=2)vv! y2x Ly D(x2)
= (- v+ DN Y2x1Fi(—v; §; x2)
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As the summary of these results, we can obtain the
orthogonal relation (III-1).

APPENDIX IV

The associated Laguerre polynomials satisfy the rela-
tion
(—1#y!

(v+u!

Substitution of relations such as x=FE2, —u=n—n*,
v=n into (IV-1) gives the following relation:

LGP (x) = XFL(x).  (IV-1)

!
LG (E?) = - (= w'=n E20°-m [0*=0(E?). (IV-2)

Then
Ry, ms(E) = (= 1)»* p*] En—n* [=a(E2)

= (= 1) n! En*=n [&*~(E?) = Ry n(E), (IV-3)

As well known, the associated Laguerre polynomials
are given by

v —xy
L@ = = o S
j=0 J-

(v, u=0,1,2,...). (IV-4)
This formula is rewritten with j=v—m as

(=xm
(v—m)!

LP(x)= 2 (35

m=0

IV-5)

Substitution of v=n*, y=n—n*, x=FE2?in this formula
gives

n¥

— E2yn*-m
rgoEy = & o)

(n*—m)! (IV-6)

Thus we obtain an explicit form of the polynomical
Ry, ne(E) as follows

R, a(E) = (—1)n* n*! En—n* [6—=n"Y(E?)

*

. . . n
which proves the symmetrical property of Rp,n(E) in  _ x (=)™ ml (@) () En+o*=2m | (n=n¥).  (IV-7)
n and n*. m=0
APPENDIX V
Table 2. Particular forms of Rn, ne(E)
Order Ru,n*(E) Order Ry, 2*(E)
1 Ri,o(E)=E 6 R5,0(E)=E6
Rs(E)=E6—5E4
2 Ry, o(E)=E2 R4 (E)=ES6—8E4+12E2
R1,(E)=E2-1 R3,3(E)=E6—9E4+18E2—6
3 R;3,0(E)=E3 7 Ry,0(E)=E7
Ry (E)y=E3-2F R61(E)=E7—6ES
Rso(E)=E7—10ES+20E3
4 Ruo(E)y=E* Ras(E)=ET—12E5+36E3~24E
R3,(E)=E4—3E2
Ry (E)y=E4—4E2+2 8 Rg,o( E)=E8
Ry7(E)=E8—T7ES6
5 Rs,o(E)=ES R 2(E)=E8—12E6+30E4
R4, ((E)=ES—4E3 Rs,3(E)=E8—15E64+60E4—60E2
R;3,(E)=ES—6E3+46F R4,4(E)=EB—16E6+T72E4—96E2+424
Table 3. Numerical values of polynomials Ry, ne(E)

E 06 08 1-0 12 14 1-6 1-8 2:0 22 24
Ri0 +0-600 +0-800 +1-000 +1-200 + 1-400 + 1-600 +1-800 +2-000 +2-200 +2-400
Ra0 +0-360 +0-640 +1-000 +1-440 +1-960 +2-560 +3-240 +4-000 +4-840 +5-760
R —0-640 —0-360 0-000 +0-440 +0-960 +1:560 +2-240 +3-000 +3-840 +4-760
R3,0 +0-216 +0-512 +1-000 +1-728 +2-744 +4-096 +5-832 +8-:000 +10-648 +13-824
Ry,q —0-984 —1-088 —1-000 —0:672 —0-056 +0-896 +2-232 +4-000 +6-248 +9-024
R4,0 +0-130 +0-410 +1-000 +2:074 +3-842 +6554 +10-498 +16:000 +23-426 +33-178
R3.1 —0-950 —1-510 —2-000 —2-246 —2-038 —1:126 +0-778 +4-000 +8-906 +15-898
Ry.2 +0-690 —0-150 —1-000 —1-686 —1-998 —1-686 —0-462 +2-000 +6-066 +12-138
Rs,0 +0-078 +0-328 +1-000 +2-488 +5-378 +10-486  +18-896  +32:000 +51-537 +79-627
Ry4,1 —0-786 —-1:720 —3-000 —4-424 —5-598 —5-898 —4-432 0-000 +8-945 +24-331
Rs3,2 +2-382 +2-056 +1-000 —0-680 —2-686 —4:490 —5-296 —4-000 +0-849 +11-083
Rs.0 +0-047 +0-262 +1-000 +2-986 +7:529 416778 +34-013 +64:000 +113-381 +191-105
Rs,y —0-603 —1-788 —4-000 —7-384 —11-681 —15-992 —18477 —16:000 —3-749 +25-215
R4, +3-327 +4-662 +5-000 +3-674 +0-313 —4934 —11-091 —16:000 —15-947 —5-199
Ri3,3 —0-643 +2-092 +4-000 +4-240 +2-231 —-2-128 —8-149 —14-000 —16-333 —9-817
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APPENDIX VI
Derivation of formula (72)

Let the integration of the left hand side of equation
(72) be denoted by Q4,

On= S 2 EP* exp (—E?) Ry n(E)dE. (VI-1)
0
Substituting the polynomial

Ry, n(E)=(—1)"n!LO(E?) (VI-2)
into (VI-1), and then putting E?>=x, Qy is rewritten

0n = (~rnt{ em Lo dx, (VI

where LO(x) is the Laguerre polynomial Ln(x) .

In order to carry out the integration of (VI-3), it is
convenient to make use of the generating function of
Ly(x); namely,

© n_ 1 xt
I La() 1% = 5 oxp (— ﬁ) (VI-4)

Then, it follows from (VI-3) and (VI-4) that

dx
(-

— (1—=1)7? Swe"XXP/’-dX, (VI-5)
0

z Qn(—t)”/n!=S exp(— X )x »f2
n=0 o 1—t¢
where

Acta Cryst. (1965). 19, 747
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With the use of the well known relation
S e-xx?dx=r (2 “2*2) , (VI-6)
we obtain ’
I gu(=rymt =1 (E52) a-oe. (I

Comparison of the coefficients of the terms % on both
sides of equation (VI-7) gives

0n =1 (252)ni o)

F(p+2) p(p—2)(p-4)..

Ip—(@2n-2)
2 2n ’

(VI-8)
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Application of a System of Linear Structure-Factor Equations
to the Structure Determination of LiB(OH)4*

By L.KUTSCHABSKY AND E. HOHNE
Institut fiir Strukturforschung der Deutschen Akademie der Wissenschaften zu Berlin, Berlin-Adlershof, Germany

(Received 19 February 1965)

If the atomic parameters are known in two dimensions, it is possible to determine the atomic param-
eters in the third direction with the help of a system (or systems) of linear structure-factor equations.
The method has been used to determine the approximate structure of LiB(OH)a.

Introduction

Ott (1927) and Avrami (1938) proposed a method for
the direct determination of atomic parameters from
the observed Fobs(hk!) by means of a non-linear system
of equations. This method has hitherto not been applied.

Assuming a knowledge of the atomic parameters in
one projection (e.g. xj, ys), the determination of the

* Forming part of the doctorate thesis of L. Kutschabsky.

third atomic parameters (z;) is possible with the help
of a system of linear structure-factor equations if the
structure factors of one particular higher level of the
reciprocal lattice [F(hkL) with L constant] are used
(Kutschabsky, 1965).

Theory
We shall limit our consideration to centrosymmetric

structures. For the space group P1 the following struct-
ure-factor equations hold (xj, y; known; L=const.):



